Converting a Pandas GroupBy object to DataFrame
我从这样的输入数据开始
1 2 3 | df1 = pandas.DataFrame( { "Name" : ["Alice","Bob","Mallory","Mallory","Bob" ,"Mallory"] , "City" : ["Seattle","Seattle","Portland","Seattle","Seattle","Portland"] } ) |
打印时显示如下:
1 2 3 4 5 6 7 | City Name 0 Seattle Alice 1 Seattle Bob 2 Portland Mallory 3 Seattle Mallory 4 Seattle Bob 5 Portland Mallory |
分组非常简单:
1 | g1 = df1.groupby( ["Name","City"] ).count() |
打印生成一个
1 2 3 4 5 6 | City Name Name City Alice Seattle 1 1 Bob Seattle 2 2 Mallory Portland 2 2 Seattle 1 1 |
但我最终想要的是另一个包含groupby对象中所有行的数据帧对象。换句话说,我希望得到以下结果:
1 2 3 4 5 6 | City Name Name City Alice Seattle 1 1 Bob Seattle 2 2 Mallory Portland 2 2 Mallory Seattle 1 1 |
我不太明白如何在熊猫文档中完成这一点。任何提示都是受欢迎的。
1 2 3 4 5 6 7 | In [19]: type(g1) Out[19]: pandas.core.frame.DataFrame In [20]: g1.index Out[20]: MultiIndex([('Alice', 'Seattle'), ('Bob', 'Seattle'), ('Mallory', 'Portland'), ('Mallory', 'Seattle')], dtype=object) |
也许你想要的东西吗?P></
1 2 3 4 5 6 7 | In [21]: g1.add_suffix('_Count').reset_index() Out[21]: Name City City_Count Name_Count 0 Alice Seattle 1 1 1 Bob Seattle 2 2 2 Mallory Portland 2 2 3 Mallory Seattle 1 1 |
or something like:P></
1 2 3 4 5 6 7 | In [36]: DataFrame({'count' : df1.groupby( ["Name","City"] ).size()}).reset_index() Out[36]: Name City count 0 Alice Seattle 1 1 Bob Seattle 2 2 Mallory Portland 2 3 Mallory Seattle 1 |
我的答案slightly change the given by韦斯,因为……
源码:P></
Aggregation functions will not return the groups that you are aggregating over if they are named columns, when
as_index=True , the default. The grouped columns will be the indices of the returned object.Passing
as_index=False will return the groups that you are aggregating over, if they are named columns.Aggregating functions are ones that reduce the dimension of the returned objects, for example:
mean ,sum ,size ,count ,std ,var ,sem ,describe ,first ,last ,nth ,min ,max . This is what happens when you do for exampleDataFrame.sum() and get back aSeries .nth can act as a reducer or a filter, see here.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import pandas as pd df1 = pd.DataFrame({"Name":["Alice","Bob","Mallory","Mallory","Bob" ,"Mallory"], "City":["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]}) print df1 # # City Name #0 Seattle Alice #1 Seattle Bob #2 Portland Mallory #3 Seattle Mallory #4 Seattle Bob #5 Portland Mallory # g1 = df1.groupby(["Name","City"], as_index=False).count() print g1 # # City Name #Name City #Alice Seattle 1 1 #Bob Seattle 2 2 #Mallory Portland 2 2 # Seattle 1 1 # |
编辑:P></
在以后的版本,你可以使用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | print df1.groupby(["Name","City"], as_index=False ).count() #IndexError: list index out of range print df1.groupby(["Name","City"]).count() #Empty DataFrame #Columns: [] #Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)] print df1.groupby(["Name","City"])[['Name','City']].count() # Name City #Name City #Alice Seattle 1 1 #Bob Seattle 2 2 #Mallory Portland 2 2 # Seattle 1 1 print df1.groupby(["Name","City"]).size().reset_index(name='count') # Name City count #0 Alice Seattle 1 #1 Bob Seattle 2 #2 Mallory Portland 2 #3 Mallory Seattle 1 |
差分
简单的任务,this should do the:P></
1 2 3 4 5 | import pandas as pd grouped_df = df1.groupby( ["Name","City"] ) pd.DataFrame(grouped_df.size().reset_index(name ="Group_Count")) |
在这里,grouped _ df.size(弹出)pulls茶独特的GroupBy count,和复位_ index()方法resets the name of the column to be你想要它。最后,《大熊猫dataframe is called to function()创建的对象dataframe河畔。P></
我的问题,但如果你想misunderstand convert to the back to a dataframe GroupBy(你可以使用.to _帧)。复位所有想当我知道this the index that included作为兼职的好。P></
队列的问题unrelated example toP></
1 2 3 | df = df['TIME'].groupby(df['Name']).min() df = df.to_frame() df = df.reset_index(level=['Name',"TIME"]) |
found this for我的挤压。P></
1 2 3 4 5 6 7 8 9 10 11 | import numpy as np import pandas as pd df1 = pd.DataFrame({ "Name" : ["Alice","Bob","Mallory","Mallory","Bob" ,"Mallory"] , "City" : ["Seattle","Seattle","Portland","Seattle","Seattle","Portland"]}) df1['City_count'] = 1 df1['Name_count'] = 1 df1.groupby(['Name', 'City'], as_index=False).count() |
解决方案:简单的内部可能是belowP></
1 | df1.reset_index().groupby( ["Name","City"],as_index=False ).count() |
我的日期和商店聚集的数量与dataframe wise toP></
1 2 3 | almo_grp_data = pd.DataFrame({'Qty_cnt' : almo_slt_models_data.groupby( ['orderDate','Item','State Abv'] )['Qty'].sum()}).reset_index() |
这些解决方案的唯一的部分工作都为我做aggregations因为我多。这里是我的grouped样品输出模式(我想dataframe:convert to aP></
P></
我希望更多的_复位模式提供比count index(),在wrote method for the above手册进入dataframe图像转换。This is not the most明白的语言/大熊猫的方式做this as is of EN和显那么详细,但它是所有我需要的。基本上,使用复位_指数(the method to start a explained above)",然后scaffolding"dataframe环一组,pairings grouped dataframe茶茶,茶retrieve指数的计算,对ungrouped dataframe做你的茶,和集值dataframe聚集在你的新。P></
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | df_grouped = df[['Salary Basis', 'Job Title', 'Hourly Rate', 'Male Count', 'Female Count']] df_grouped = df_grouped.groupby(['Salary Basis', 'Job Title'], as_index=False) # Grouped gives us the indices we want for each grouping # We cannot convert a groupedby object back to a dataframe, so we need to do it manually # Create a new dataframe to work against df_aggregated = df_grouped.size().to_frame('Total Count').reset_index() df_aggregated['Male Count'] = 0 df_aggregated['Female Count'] = 0 df_aggregated['Job Rate'] = 0 def manualAggregations(indices_array): temp_df = df.iloc[indices_array] return { 'Male Count': temp_df['Male Count'].sum(), 'Female Count': temp_df['Female Count'].sum(), 'Job Rate': temp_df['Hourly Rate'].max() } for name, group in df_grouped: ix = df_grouped.indices[name] calcDict = manualAggregations(ix) for key in calcDict: #Salary Basis, Job Title columns = list(name) df_aggregated.loc[(df_aggregated['Salary Basis'] == columns[0]) & (df_aggregated['Job Title'] == columns[1]), key] = calcDict[key] |
如果你在字典不是茶事,茶是被用inline for循环:P></
1 2 | df_aggregated['Male Count'].loc[(df_aggregated['Salary Basis'] == columns[0]) & (df_aggregated['Job Title'] == columns[1])] = df['Male Count'].iloc[ix].sum() |
is the key to the复位使用_ index()方法。P></
使用:P></
1 2 3 4 5 6 7 | import pandas df1 = pandas.DataFrame( { "Name" : ["Alice","Bob","Mallory","Mallory","Bob" ,"Mallory"] , "City" : ["Seattle","Seattle","Portland","Seattle","Seattle","Portland"] } ) g1 = df1.groupby( ["Name","City"] ).count().reset_index() |
现在你有你的新dataframe G1期:P></
P></