What is the difference between d3.scale.quantize() and d3.scale.quantile()?
从文档中,定义是:
量化
..a variant of linear scales with a discrete rather than continuous range. The input domain is still continuous, and divided into uniform segments based on the number of values in (the cardinality of) the output range.
分位数
...map an input domain to a discrete range. Although the input domain is continuous and the scale will accept any reasonable input value, the input domain is specified as a discrete set of values. The number of values in (the cardinality of) the output range determines the number of quantiles that will be computed from the input domain
这些似乎都将连续输入域映射到一组离散值。谁能说明一下区别?
一般来说,差值类似于均值和中位数的差值。
只有当输入域中的值的数量大于输出域中的值的数量时,这种差异才真正明显。最好用一个例子来说明。
对于
着色图有一个很好的视觉解释。
量化:
分位数:
On the scatter plot, the previously horizontal bars are now vertical as the colors of each place is determined by its rank, not value.
这是 D3 v4 中的代码片段,它显示了 quantize 和 quantile 的不同结果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | const purples = [ 'purple1', 'purple2', 'purple3', 'purple4', 'purple5' ] const dataset = [1, 1, 1, 1, 2, 3, 4, 5] // try [1, 2, 3, 4, 5] as well const quantize = d3.scaleQuantize() .domain(d3.extent(dataset)) // pass the min and max of the dataset .range(purples) const quantile = d3.scaleQuantile() .domain(dataset) // pass the entire dataset .range(purples) console.log(quantize(3)) // purples[3] console.log(quantile(3)) // purples[4] |
我自己也有同样的问题。所以我做了一个可视化来帮助理解它们是如何工作的。
据我所知,区别在于统计分位数是有限的、相等的、均匀分布的离散块/桶,您的结果只是落入其中。不同之处在于量化比例是基于离散输入的连续函数。
基本上:量化允许插值和外推,其中分位数强制值进入子集。
因此,例如,如果学生的计算成绩在量化等级中为 81.7%,那么百分位数的分位数等级只会说它是第 81 个百分位数。那里没有灵活的余地。