Successive blocks reading memory from initial blocks
所以这是我的程序的一部分,我为两个班级做了一个减少总和。我用共享数组
索引
我有一个测试用例的大小,用
我想调用一个块数等于我的测试数(10000)的内核,但是总和有一些问题,所以我改为逐步进行。
我找不到解决方案,但是每当我调用块数超过
此处的 Cuda 功能是 2.0,即 GT 520 卡。使用 CUDA 6.5 编译。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | #include <stdio.h> #include <cuda.h> #include <cuda_runtime.h> #define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); } inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true) { if (code != cudaSuccess) { fprintf(stderr,"GPUassert: %s %s %d\ ", cudaGetErrorString(code), file, line); } } #define MAX_CLASSES 2 #define max_threads 64 //#define MAX_FEATURES 65 __device__ __constant__ int d_MAX_SIZE; __device__ __constant__ int offset; __device__ void rules_points_reduction(float points[max_threads * MAX_CLASSES], int nrules[max_threads * MAX_CLASSES]){ float psum[MAX_CLASSES]; int nsum[MAX_CLASSES]; for (int i = 0; i < MAX_CLASSES; i++){ psum[i] = points[threadIdx.x + i * blockDim.x]; nsum[i] = nrules[threadIdx.x + i * blockDim.x]; } __syncthreads(); if (blockDim.x >= 1024) { if (threadIdx.x < 512) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 512 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 512 + i * blockDim.x]; } } __syncthreads(); } if (blockDim.x >= 512) { if (threadIdx.x < 256) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 256 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 256 + i * blockDim.x]; } } __syncthreads(); } if (blockDim.x >= 256) { if (threadIdx.x < 128) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 128 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 128 + i * blockDim.x]; } } __syncthreads(); } if (blockDim.x >= 128) { if (threadIdx.x < 64) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 64 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 64 + i * blockDim.x]; } } __syncthreads(); } if (threadIdx.x < 32) { // now that we are using warp-synchronous programming (below) // we need to declare our shared memory volatile so that the compiler // doesn't reorder stores to it and induce incorrect behavior. //volatile int* smem = nrules; //volatile float* smemf = points; if (blockDim.x >= 64) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 32 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 32 + i * blockDim.x]; } } if (blockDim.x >= 32) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 16 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 16 + i * blockDim.x]; } } if (blockDim.x >= 16) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 8 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 8 + i * blockDim.x]; } } if (blockDim.x >= 8) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 4 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 4 + i * blockDim.x]; } } if (blockDim.x >= 4) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 2 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 2 + i * blockDim.x]; } } if (blockDim.x >= 2) { for (int i = 0; i < MAX_CLASSES; i++){ points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 1 + i * blockDim.x]; nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 1 + i * blockDim.x]; } } } } __device__ void d_get_THE_prediction(short k, float* finalpoints, int* gn_rules) { int max; short true_label, n_items; __shared__ float points[max_threads * MAX_CLASSES]; __shared__ int nrules[max_threads * MAX_CLASSES]; //__shared__ short items[MAX_FEATURES], ele[MAX_FEATURES]; __shared__ int max2; for (int i = 0; i < MAX_CLASSES; i++) { points[threadIdx.x + i * blockDim.x] = 1; nrules[threadIdx.x + i * blockDim.x] = 1; } if (threadIdx.x == 0) { if (k == 1){ nrules[0] = 1; nrules[blockDim.x] = 1; } //max2 = GetBinCoeff_l_d(n_items, k); } __syncthreads(); //max = max2; //d_induce_rules(items, ele, n_items, k, max, nrules, points); __syncthreads(); rules_points_reduction(points, nrules); if (threadIdx.x == 0){ for (int i = 0; i < MAX_CLASSES; i++){ gn_rules[(blockIdx.x + offset) + i * blockDim.x] += nrules[i * blockDim.x]; finalpoints[(blockIdx.x + offset) + i * blockDim.x] += points[i * blockDim.x]; } printf("block %d k%d %f %f %d %d\ ", (blockIdx.x + offset), k, finalpoints[(blockIdx.x + offset)], finalpoints[(blockIdx.x + offset) + blockDim.x], gn_rules[(blockIdx.x + offset)], gn_rules[(blockIdx.x + offset) + blockDim.x]); } } __global__ void lazy_supervised_classification_kernel(int k, float* finalpoints, int* n_rules){ d_get_THE_prediction( k, finalpoints, n_rules); } int main() { //freopen("output.txt","w", stdout); int N_TESTS = 10000; int MAX_SIZE = 3; float *finalpoints = (float*)calloc(MAX_CLASSES * N_TESTS, sizeof(float)); float *d_finalpoints = 0; int *d_nruls = 0; int *nruls = (int*)calloc(MAX_CLASSES * N_TESTS, sizeof(int)); gpuErrchk(cudaMalloc(&d_finalpoints, MAX_CLASSES * N_TESTS * sizeof(float))); gpuErrchk(cudaMemset(d_finalpoints, 0, MAX_CLASSES * N_TESTS * sizeof(float))); gpuErrchk(cudaMalloc(&d_nruls, MAX_CLASSES * N_TESTS * sizeof(int))); gpuErrchk(cudaMemset(d_nruls, 0, MAX_CLASSES * N_TESTS * sizeof(int))); gpuErrchk(cudaMemcpyToSymbol(d_MAX_SIZE, &MAX_SIZE, sizeof(int), 0, cudaMemcpyHostToDevice)); int step = max_threads, ofset = 0; for (int k = 1; k < MAX_SIZE; k++){ //N_TESTS-step for (ofset = 0; ofset < max_threads; ofset += step){ gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice)); lazy_supervised_classification_kernel <<<step, max_threads >>>(k, d_finalpoints, d_nruls); gpuErrchk(cudaDeviceSynchronize()); } gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice));//comment these lines //N_TESTS - step lazy_supervised_classification_kernel <<<3, max_threads >> >(k, d_finalpoints, d_nruls);// gpuErrchk(cudaDeviceSynchronize());// } gpuErrchk(cudaFree(d_finalpoints)); gpuErrchk(cudaFree(d_nruls)); free(finalpoints); free(nruls); gpuErrchk(cudaDeviceReset()); return(0); } |
我不相信这个索引是你想要的:
1 2 | gn_rules[(blockIdx.x + offset) + i * blockDim.x] += ...; finalpoints[(blockIdx.x + offset) + i * blockDim.x] += ...; |
对于
所以如果你把上面的代码行改成:
1 2 | gn_rules[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += nrules[i * blockDim.x]; finalpoints[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += points[i * blockDim.x]; |
我相信你会得到你期望的输出。