关于 c :Successive blocks 从初始块中读取内存

Successive blocks reading memory from initial blocks

所以这是我的程序的一部分,我为两个班级做了一个减少总和。我用共享数组 __shared__ int nrules[max_threads * MAX_CLASSES]; 的一半对类进行索引,因此第一类从 nrules[0] 开始,第二类从 nrules[blockDim.x or max_threads] 开始。对两半进行了减少。总和保存在作为参数传递的全局数组中,该数组将保留每个块的总和,因此由 blockIdx.x.

索引

我有一个测试用例的大小,用MAX_SIZE表示,所有测试首先从1处理到MAX_SIZE,每个块的总和在全局数组中累加。

我想调用一个块数等于我的测试数(10000)的内核,但是总和有一些问题,所以我改为逐步进行。

我找不到解决方案,但是每当我调用块数超过 max_threads 的内核时,它就会开始从初始块中求和。如果您执行代码,您将看到它将打印每个块的值,在这种情况下为 64,每个块有 64 个线程。如果我再执行至少 1 个块,则总和将改为 128。这用于第一类总和。就好像偏移变量什么都不做,而写入再次发生在第一个块中。在 MAX_SIZE = 3 的情况下,第一个块的第二类总和更改为 192。
此处的 Cuda 功能是 2.0,即 GT 520 卡。使用 CUDA 6.5 编译。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>

#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
    if (code != cudaSuccess)
    {
        fprintf(stderr,"GPUassert: %s %s %d\
"
, cudaGetErrorString(code), file, line);

    }
}

#define MAX_CLASSES 2
#define max_threads 64
//#define MAX_FEATURES 65

__device__ __constant__ int d_MAX_SIZE;
__device__  __constant__ int offset;

__device__ void rules_points_reduction(float points[max_threads * MAX_CLASSES], int nrules[max_threads * MAX_CLASSES]){

    float psum[MAX_CLASSES];
    int nsum[MAX_CLASSES];

    for (int i = 0; i < MAX_CLASSES; i++){
        psum[i] = points[threadIdx.x + i * blockDim.x];
        nsum[i] = nrules[threadIdx.x + i * blockDim.x];
    }

    __syncthreads();

    if (blockDim.x >= 1024) {
        if (threadIdx.x < 512) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 512 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 512 + i * blockDim.x];
            }

        } __syncthreads();
    }
    if (blockDim.x >= 512) {
        if (threadIdx.x < 256) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 256 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 256 + i * blockDim.x];
            }
        } __syncthreads();
    }
    if (blockDim.x >= 256) {
        if (threadIdx.x < 128) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 128 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 128 + i * blockDim.x];
            }
        } __syncthreads();
    }
    if (blockDim.x >= 128) {
        if (threadIdx.x <  64) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 64 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 64 + i * blockDim.x];
            }
        } __syncthreads();
    }

    if (threadIdx.x < 32)
    {
        // now that we are using warp-synchronous programming (below)
        // we need to declare our shared memory volatile so that the compiler
        // doesn't reorder stores to it and induce incorrect behavior.
        //volatile int* smem = nrules;
        //volatile float* smemf = points;
        if (blockDim.x >= 64) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 32 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 32 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 32) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 16 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 16 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 16) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 8 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 8 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 8) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 4 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 4 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 4) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 2 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 2 + i * blockDim.x];
            }
        }
        if (blockDim.x >= 2) {
            for (int i = 0; i < MAX_CLASSES; i++){
                points[threadIdx.x + i * blockDim.x] = psum[i] = psum[i] + points[threadIdx.x + 1 + i * blockDim.x];
                nrules[threadIdx.x + i * blockDim.x] = nsum[i] = nsum[i] + nrules[threadIdx.x + 1 + i * blockDim.x];
            }
        }
    }

}

__device__ void d_get_THE_prediction(short k, float* finalpoints, int* gn_rules)
{  
    int max;
    short true_label, n_items;

    __shared__ float points[max_threads * MAX_CLASSES];
    __shared__ int nrules[max_threads * MAX_CLASSES];
    //__shared__ short  items[MAX_FEATURES], ele[MAX_FEATURES];
    __shared__ int max2;

    for (int i = 0; i < MAX_CLASSES; i++)
    {
        points[threadIdx.x + i * blockDim.x] = 1;
        nrules[threadIdx.x + i * blockDim.x] = 1;
    }

    if (threadIdx.x == 0) {
        if (k == 1){
            nrules[0] = 1;
            nrules[blockDim.x] = 1;
        }
        //max2 = GetBinCoeff_l_d(n_items, k);
    }
    __syncthreads();

    //max = max2;

    //d_induce_rules(items, ele, n_items, k, max, nrules, points);

    __syncthreads();

    rules_points_reduction(points, nrules);

    if (threadIdx.x == 0){

        for (int i = 0; i < MAX_CLASSES; i++){
            gn_rules[(blockIdx.x + offset) + i * blockDim.x] += nrules[i * blockDim.x];
            finalpoints[(blockIdx.x + offset) + i * blockDim.x] += points[i * blockDim.x];

        }      
        printf("block %d k%d %f %f %d %d\
"
, (blockIdx.x + offset), k, finalpoints[(blockIdx.x + offset)],
            finalpoints[(blockIdx.x + offset) + blockDim.x], gn_rules[(blockIdx.x + offset)], gn_rules[(blockIdx.x + offset) + blockDim.x]);

    }
}

__global__ void lazy_supervised_classification_kernel(int k, float* finalpoints, int* n_rules){

    d_get_THE_prediction( k, finalpoints, n_rules);

}


int main() {
    //freopen("output.txt","w", stdout);

    int N_TESTS = 10000;
    int MAX_SIZE = 3;

    float *finalpoints = (float*)calloc(MAX_CLASSES * N_TESTS, sizeof(float));
    float *d_finalpoints = 0;

    int *d_nruls = 0;
    int *nruls = (int*)calloc(MAX_CLASSES * N_TESTS, sizeof(int));  

    gpuErrchk(cudaMalloc(&d_finalpoints, MAX_CLASSES * N_TESTS * sizeof(float)));
    gpuErrchk(cudaMemset(d_finalpoints, 0, MAX_CLASSES * N_TESTS * sizeof(float)));

    gpuErrchk(cudaMalloc(&d_nruls, MAX_CLASSES * N_TESTS * sizeof(int)));
    gpuErrchk(cudaMemset(d_nruls, 0, MAX_CLASSES * N_TESTS * sizeof(int)));

    gpuErrchk(cudaMemcpyToSymbol(d_MAX_SIZE, &MAX_SIZE, sizeof(int), 0, cudaMemcpyHostToDevice));

    int step = max_threads, ofset = 0;

    for (int k = 1; k < MAX_SIZE; k++){

                               //N_TESTS-step
        for (ofset = 0; ofset < max_threads; ofset += step){

            gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice));
            lazy_supervised_classification_kernel <<<step, max_threads >>>(k, d_finalpoints, d_nruls);
            gpuErrchk(cudaDeviceSynchronize());
        }

        gpuErrchk(cudaMemcpyToSymbol(offset, &ofset, sizeof(int), 0, cudaMemcpyHostToDevice));//comment these lines
                                          //N_TESTS - step      
        lazy_supervised_classification_kernel <<<3, max_threads >> >(k, d_finalpoints, d_nruls);//
        gpuErrchk(cudaDeviceSynchronize());//

    }
    gpuErrchk(cudaFree(d_finalpoints));
    gpuErrchk(cudaFree(d_nruls));
    free(finalpoints);
    free(nruls);    

    gpuErrchk(cudaDeviceReset());  
    return(0);
}

我不相信这个索引是你想要的:

1
2
 gn_rules[(blockIdx.x + offset) + i * blockDim.x] += ...;
 finalpoints[(blockIdx.x + offset) + i * blockDim.x] += ...;

对于 MAX_CLASSES = 2,每个块需要存储 2 个 finalpoints 值和 2 个 gn_rules 值。因此,当 offset 非零时,它需要按 MAX_CLASSES 值缩放,以便索引到该块的正确存储的开始。

所以如果你把上面的代码行改成:

1
2
 gn_rules[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += nrules[i * blockDim.x];
 finalpoints[(blockIdx.x + (offset*MAX_CLASSES)) + i * blockDim.x] += points[i * blockDim.x];

我相信你会得到你期望的输出。