关于python:为什么’x’中的’x’比’x’==’x’快?

Why is 'x' in ('x',) faster than 'x' == 'x'?

1
2
3
4
>>> timeit.timeit("'x' in ('x',)")
0.04869917374131205
>>> timeit.timeit("'x' == 'x'")
0.06144205736110564

同样适用于具有多个元素的元组,两个版本似乎都呈线性增长:

1
2
3
4
5
6
7
8
>>> timeit.timeit("'x' in ('x', 'y')")
0.04866674801541748
>>> timeit.timeit("'x' == 'x' or 'x' == 'y'")
0.06565782838087131
>>> timeit.timeit("'x' in ('y', 'x')")
0.08975995576448526
>>> timeit.timeit("'x' == 'y' or 'x' == 'y'")
0.12992391047427532

基于此,我认为我应该完全开始在任何地方使用in,而不是==


正如我对大卫·沃尔夫所提到的,这不仅仅是一个问题;这两种方法都发送到is;你可以通过这样做来证明这一点。

1
2
3
4
5
min(Timer("x == x", setup="x = 'a' * 1000000").repeat(10, 10000))
#>>> 0.00045456900261342525

min(Timer("x == y", setup="x = 'a' * 1000000; y = 'a' * 1000000").repeat(10, 10000))
#>>> 0.5256857610074803

第一个只能这么快,因为它通过身份进行检查。

为了找出其中一个比另一个花费更长时间的原因,让我们通过执行进行跟踪。

它们都是从ceval.c开始,从COMPARE_OP开始,因为这是涉及到的字节码。

1
2
3
4
5
6
7
8
9
10
11
12
13
TARGET(COMPARE_OP) {
    PyObject *right = POP();
    PyObject *left = TOP();
    PyObject *res = cmp_outcome(oparg, left, right);
    Py_DECREF(left);
    Py_DECREF(right);
    SET_TOP(res);
    if (res == NULL)
        goto error;
    PREDICT(POP_JUMP_IF_FALSE);
    PREDICT(POP_JUMP_IF_TRUE);
    DISPATCH();
}

这将从堆栈中弹出值(从技术上讲,它只弹出一个值)

1
2
PyObject *right = POP();
PyObject *left = TOP();

运行比较:

1
PyObject *res = cmp_outcome(oparg, left, right);

cmp_outcome是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w)
{
    int res = 0;
    switch (op) {
    case PyCmp_IS: ...
    case PyCmp_IS_NOT: ...
    case PyCmp_IN:
        res = PySequence_Contains(w, v);
        if (res < 0)
            return NULL;
        break;
    case PyCmp_NOT_IN: ...
    case PyCmp_EXC_MATCH: ...
    default:
        return PyObject_RichCompare(v, w, op);
    }
    v = res ? Py_True : Py_False;
    Py_INCREF(v);
    return v;
}

这就是路径分割的地方。PyCmp_IN分公司

1
2
3
4
5
6
7
8
9
10
int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
    Py_ssize_t result;
    PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
    if (sqm != NULL && sqm->sq_contains != NULL)
        return (*sqm->sq_contains)(seq, ob);
    result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
    return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}

注意,元组定义为

1
2
3
4
5
6
7
8
9
10
static PySequenceMethods tuple_as_sequence = {
    ...
    (objobjproc)tuplecontains,                  /* sq_contains */
};

PyTypeObject PyTuple_Type = {
    ...
    &tuple_as_sequence,                         /* tp_as_sequence */
    ...
};

所以分支机构

1
if (sqm != NULL && sqm->sq_contains != NULL)

将采取和*sqm->sq_contains这是功能的(objobjproc)tuplecontains将采取。

是的。

1
2
3
4
5
6
7
8
9
10
11
static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
    Py_ssize_t i;
    int cmp;

    for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
        cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
                                           Py_EQ);
    return cmp;
}

…等等,那不是另一个分支机构所采取的措施吗?不,那是PyObject_RichCompare

这个代码路径很短,所以它很可能会下降到这两个的速度。让我们比较一下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
    PyObject *res;
    int ok;

    /* Quick result when objects are the same.
       Guarantees that identity implies equality. */
    if (v == w) {
        if (op == Py_EQ)
            return 1;
        else if (op == Py_NE)
            return 0;
    }

    ...
}

PyObject_RichCompareBool中的代码路径几乎立即终止。对于PyObject_RichCompare来说,它是

1
2
3
4
5
6
7
8
9
10
11
12
13
PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
    PyObject *res;

    assert(Py_LT <= op && op <= Py_GE);
    if (v == NULL || w == NULL) { ... }
    if (Py_EnterRecursiveCall(" in comparison"))
        return NULL;
    res = do_richcompare(v, w, op);
    Py_LeaveRecursiveCall();
    return res;
}

Py_EnterRecursiveCall/Py_LeaveRecursiveCall组合不在前面的路径中使用,但这些宏相对较快,在增加和减少一些全局变量后会短路。

do_richcompare有:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
    richcmpfunc f;
    PyObject *res;
    int checked_reverse_op = 0;

    if (v->ob_type != w->ob_type && ...) { ... }
    if ((f = v->ob_type->tp_richcompare) != NULL) {
        res = (*f)(v, w, op);
        if (res != Py_NotImplemented)
            return res;
        ...
    }
    ...
}

这会快速检查一下,叫v->ob_type->tp_richcompare,也就是说

1
2
3
4
5
PyTypeObject PyUnicode_Type = {
    ...
    PyUnicode_RichCompare,      /* tp_richcompare */
    ...
};

哪一个可以

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
    int result;
    PyObject *v;

    if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
        Py_RETURN_NOTIMPLEMENTED;

    if (PyUnicode_READY(left) == -1 ||
        PyUnicode_READY(right) == -1)
        return NULL;

    if (left == right) {
        switch (op) {
        case Py_EQ:
        case Py_LE:
        case Py_GE:
            /* a string is equal to itself */
            v = Py_True;
            break;
        case Py_NE:
        case Py_LT:
        case Py_GT:
            v = Py_False;
            break;
        default:
            ...
        }
    }
    else if (...) { ... }
    else { ...}
    Py_INCREF(v);
    return v;
}

也就是说,left == right上的快捷方式…但只有在做完之后

1
2
3
4
    if (!PyUnicode_Check(left) || !PyUnicode_Check(right))

    if (PyUnicode_READY(left) == -1 ||
        PyUnicode_READY(right) == -1)

所有路径都是这样的(手动递归地内联、展开和修剪已知的分支)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
POP()                           # Stack stuff
TOP()                           #
                                #
case PyCmp_IN:                  # Dispatch on operation
                                #
sqm != NULL                     # Dispatch to builtin op
sqm->sq_contains != NULL        #
*sqm->sq_contains               #
                                #
cmp == 0                        # Do comparison in loop
i < Py_SIZE(a)                  #
v == w                          #
op == Py_EQ                     #
++i                             #
cmp == 0                        #
                                #
res < 0                         # Convert to Python-space
res ? Py_True : Py_False        #
Py_INCREF(v)                    #
                                #
Py_DECREF(left)                 # Stack stuff
Py_DECREF(right)                #
SET_TOP(res)                    #
res == NULL                     #
DISPATCH()                      #

VS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
POP()                           # Stack stuff
TOP()                           #
                                #
default:                        # Dispatch on operation
                                #
Py_LT <= op                     # Checking operation
op <= Py_GE                     #
v == NULL                       #
w == NULL                       #
Py_EnterRecursiveCall(...)      # Recursive check
                                #
v->ob_type != w->ob_type        # More operation checks
f = v->ob_type->tp_richcompare  # Dispatch to builtin op
f != NULL                       #
                                #
!PyUnicode_Check(left)          # ...More checks
!PyUnicode_Check(right))        #
PyUnicode_READY(left) == -1     #
PyUnicode_READY(right) == -1    #
left == right                   # Finally, doing comparison
case Py_EQ:                     # Immediately short circuit
Py_INCREF(v);                   #
                                #
res != Py_NotImplemented        #
                                #
Py_LeaveRecursiveCall()         # Recursive check
                                #
Py_DECREF(left)                 # Stack stuff
Py_DECREF(right)                #
SET_TOP(res)                    #
res == NULL                     #
DISPATCH()                      #

现在,PyUnicode_CheckPyUnicode_READY非常便宜,因为它们只检查几个字段,但很明显,顶部的代码路径更小,函数调用更少,只有一个开关只是稍微薄一点。

DR:

两者都发送到if (left_pointer == right_pointer);区别在于他们要做多少工作才能到达那里。in只是做得比较少。


这里有三个因素在起作用,综合起来,产生了这种令人惊讶的行为。

第一:in运算符在检查相等性(x == y之前,取一个快捷方式检查身份(x is y):

1
2
3
4
5
6
7
>>> n = float('nan')
>>> n in (n, )
True
>>> n == n
False
>>> n is n
True

第二:由于python的字符串interning,"x" in ("x", )中的"x"都是相同的:

1
2
>>>"x" is"x"
True

(大警告:这是特定于实现的行为!不应使用is来比较字符串,因为它有时会给出令人惊讶的答案;例如"x" * 100 is"x" * 100 ==> False

第三:正如Veedrac神奇的回答所详述的那样,tuple.__contains__(x in (y, )大致相当于(y, ).__contains__(x)以比str.__eq__更快的速度执行身份检查(同样,x == y大致相当于x.__eq__(y)的速度)。

你可以看到这方面的证据,因为x in (y, )比逻辑上的等价物x == y慢得多:

1
2
3
4
5
6
7
8
9
10
11
In [18]: %timeit 'x' in ('x', )
10000000 loops, best of 3: 65.2 ns per loop

In [19]: %timeit 'x' == 'x'    
10000000 loops, best of 3: 68 ns per loop

In [20]: %timeit 'x' in ('y', )
10000000 loops, best of 3: 73.4 ns per loop

In [21]: %timeit 'x' == 'y'    
10000000 loops, best of 3: 56.2 ns per loop

x in (y, )的情况比较慢,因为在is比较失败后,in运算符返回到正常的相等检查(即使用==操作),因此比较所用的时间大约与==相同,由于创建元组的开销,使整个操作变慢,并移动其成员等。

还要注意,只有当a is b出现以下情况时,a in (b, )才会更快:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [48]: a = 1            

In [49]: b = 2

In [50]: %timeit a is a or a == a
10000000 loops, best of 3: 95.1 ns per loop

In [51]: %timeit a in (a, )      
10000000 loops, best of 3: 140 ns per loop

In [52]: %timeit a is b or a == b
10000000 loops, best of 3: 177 ns per loop

In [53]: %timeit a in (b, )      
10000000 loops, best of 3: 169 ns per loop

(为什么a in (b, )a is b or a == b快?我想虚拟机指令会更少——a in (b, )只是3条指令,其中a is b or a == b将是更多的虚拟机指令)

Veedrac的答案-https://stackoverflow.com/a/28889838/71522-详细介绍了在==in中的每一个过程中发生的具体情况,值得一读。