关于interp1d scipy中的python:nan

nan in interp1d scipy

我有以下代码,正在使用interp1d在python中进行处理,看来interp1d的输出乘以查询点数得出的数组起始值为NaN。 为什么?

1
2
3
4
5
6
Freq_Vector = np.arange(0,22051,1)
Freq_ref = np.array([20,25,31.5,40,50,63,80,100,125,160,200,250,315,400,500,630,750,800,1000,1250,1500,1600,2000,2500,3000,3150,4000,5000,6000,6300,8000,9000,10000,11200,12500,14000,15000,16000,18000,20000])  
W_ref=-1*np.array([39.6,32,25.85,21.4,18.5,15.9,14.1,12.4,11,9.6,8.3,7.4,6.2,4.8,3.8,3.3,2.9,2.6,2.6,4.5,5.4,6.1,8.5,10.4,7.3,7,6.6,7,9.2,10.2,12.2,10.8,10.1,12.7,15,18.2,23.8,32.3,45.5,50])
if FreqVector[-1] > Freq_ref[-1]:
    Freq_ref[-1] = FreqVector[-1]
WdB = interpolate.interp1d(Freq_ref,W_ref,kind='cubic',axis=-1, copy=True, bounds_error=False, fill_value=np.nan)(FreqVector)

WdB的前20个值是:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
00000 = {float64} nan
00001 = {float64} nan
00002 = {float64} nan
00003 = {float64} nan
00004 = {float64} nan
00005 = {float64} nan
00006 = {float64} nan
00007 = {float64} nan
00008 = {float64} nan
00009 = {float64} nan
00010 = {float64} nan
00011 = {float64} nan
00012 = {float64} nan
00013 = {float64} nan
00014 = {float64} nan
00015 = {float64} nan
00016 = {float64} nan
00017 = {float64} nan
00018 = {float64} nan
00019 = {float64} nan
00020 = {float64} -39.6
00021 = {float64} -37.826313148

以下是maltab中前20个值的输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
-58.0424562952059
-59.2576965087483
-60.1150845850336
-60.6367649499501
-60.8448820293863
-60.7615802492306
-60.4090040353715
-59.8092978136973
-58.9846060100965
-57.9570730504576
-56.7488433606689
-55.3820613666188
-53.8788714941959
-52.2614181692886
-50.5518458177851
-48.7722988655741
-46.9449217385440
-45.0918588625830
-43.2352546635798
-41.3972535674226
-39.6000000000000
-37.8656383872004

我该如何避免这种情况,而实际上却拥有与interp1d相似的真实值?


我不知道确切的原因,但是当查看绘制的数据时,拟合实际上起作用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from scipy import interpolate
import numpy as np
from matplotlib import pyplot as plt

Freq_Vector = np.arange(0,22051.0,1)
Freq_ref = np.array([20,25,31.5,40,50,63,80,100,125,160,200,250,315,\
400,500,630,750,800,1000,1250,1500,1600,2000,2500,3000,3150,\
4000,5000,6000,6300,8000,9000,10000,11200,12500,14000,15000,\
16000,18000,20000])
W_ref=-1*np.array([39.6,32,25.85,21.4,18.5,15.9,14.1,12.4,11,\
9.6,8.3,7.4,6.2,4.8,3.8,3.3,2.9,2.6,2.6,4.5,5.4,6.1,8.5,10.4,7.3,7,\
6.6,7,9.2,10.2,12.2,10.8,10.1,12.7,15,18.2,23.8,32.3,45.5,50])
if Freq_Vector[-1] > Freq_ref[-1]:
    Freq_ref[-1] = Freq_Vector[-1]
WdB = interpolate.interp1d(Freq_ref.tolist(),W_ref.tolist(),\
kind='cubic', bounds_error=False)(Freq_Vector)

plt.plot(Freq_ref,W_ref,'..',color='black',label='Reference')
plt.plot(Freq_ref,W_ref,'-.',color='blue',label='Interpolated')
plt.legend()

该图如下所示:

Data-Plot

插值实际上正在发生,但是拟合效果不理想。但是,如果您打算拟合数据,那么为什么不使用样条插值器呢?仍然是立方的,但不太容易发生过载。

1
interpolate.InterpolatedUnivariateSpline(Freq_ref.tolist(),W_ref.tolist())(Freq_Vector)

enter image description here

数据和绘图非常顺利。

1
2
3
4
WdB
Out[34]:
array([-114.42984432, -108.43602531, -102.72381906, ...,  -50.00471866,
        -50.00236016,  -50.        ])

interp1d"将数组的起始值输出为NaN。为什么?"

因为您给它的样本点集(Freq_ref)的下界为20,并且interp1d将为样本集之外的点分配值,如果bounds_errorFalse,则fill_value的值( docs)。
并且由于您要求对019的频率值进行插值,因此该方法将其分配为NaN
这不同于Matlab的默认值,后者使用请求的插值方法(docs)进行插值。

话虽这么说,我会谨慎地将Matlab(或任何程序)的默认外推值称为"实际值",因为外推可能非常困难并且容易产生异常行为。对于您引用的值,Matlab的'cubic' / 'pchip'外推法生成图形:

y vs x interpolation in low frequency range

外推表示y值翻转。这可能是正确的,但在接受福音之前应仔细考虑。

话虽如此,如果您想向interp1d方法添加外推功能,请参见以下答案(因为我是Matlab专家,而不是Python专家)。