Circle-circle intersection points
如何计算两个圆的交点。 我希望在所有情况下都可以有两个,一个或没有交点。
我有中心点的x和y坐标,以及每个圆的半径。
最好使用python的答案,但是任何有效的算法都是可以接受的。
两个圆的交点
保罗·伯克(Paul Bourke)撰写
The following note describes how to find the intersection point(s)
between two circles on a plane, the following notation is used. The
aim is to find the two points P3 = (x3,
y3) if they exist.
First calculate the distance d between the center
of the circles. d = ||P1 - P0||.
- If d > r0 + r1 then there are no solutions,
the circles are separate.- If d < |r0 -
r1| then there are no solutions because one circle is
contained within the other.- If d = 0 and r0 =
r1 then the circles are coincident and there are an
infinite number of solutions.Considering the two triangles P0P2P3
and P1P2P3 we can writea2 + h2 = r02 and
b2 + h2 = r12Using d = a + b we can solve for a,
a =
(r02 - r12 +
d2 ) / (2 d)It can be readily shown that this reduces to
r0 when the two circles touch at one point, ie: d =
r0 + r1Solve for h by substituting a into the first
equation, h2 = r02 - a2So
P2 = P0 + a ( P1 -
P0 ) / dAnd finally, P3 =
(x3,y3) in terms of P0 =
(x0,y0), P1 =
(x1,y1) and P2 =
(x2,y2), isx3 =
x2 +- h ( y1 - y0 ) / dy3 = y2 -+ h ( x1 - x0 ) /
d
资料来源:http://paulbourke.net/geometry/circlesphere/
这是基于Paul Bourke的文章的C ++实现。 它只有在有两个交叉点时才有效,否则可能返回NaN NAN NAN NAN。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | class Point{ public: float x, y; Point(float px, float py) { x = px; y = py; } Point sub(Point p2) { return Point(x - p2.x, y - p2.y); } Point add(Point p2) { return Point(x + p2.x, y + p2.y); } float distance(Point p2) { return sqrt((x - p2.x)*(x - p2.x) + (y - p2.y)*(y - p2.y)); } Point normal() { float length = sqrt(x*x + y*y); return Point(x/length, y/length); } Point scale(float s) { return Point(x*s, y*s); } }; class Circle { public: float x, y, r, left; Circle(float cx, float cy, float cr) { x = cx; y = cy; r = cr; left = x - r; } pair<Point, Point> intersections(Circle c) { Point P0(x, y); Point P1(c.x, c.y); float d, a, h; d = P0.distance(P1); a = (r*r - c.r*c.r + d*d)/(2*d); h = sqrt(r*r - a*a); Point P2 = P1.sub(P0).scale(a/d).add(P0); float x3, y3, x4, y4; x3 = P2.x + h*(P1.y - P0.y)/d; y3 = P2.y - h*(P1.x - P0.x)/d; x4 = P2.x - h*(P1.y - P0.y)/d; y4 = P2.y + h*(P1.x - P0.x)/d; return pair<Point, Point>(Point(x3, y3), Point(x4, y4)); } }; |
这是使用向量的Javascript实现。 该代码有充分的文档记录,您应该可以遵循它。 这是原始来源
观看现场演示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | // Let EPS (epsilon) be a small value var EPS = 0.0000001; // Let a point be a pair: (x, y) function Point(x, y) { this.x = x; this.y = y; } // Define a circle centered at (x,y) with radius r function Circle(x,y,r) { this.x = x; this.y = y; this.r = r; } // Due to double rounding precision the value passed into the Math.acos // function may be outside its domain of [-1, +1] which would return // the value NaN which we do not want. function acossafe(x) { if (x >= +1.0) return 0; if (x <= -1.0) return Math.PI; return Math.acos(x); } // Rotates a point about a fixed point at some angle 'a' function rotatePoint(fp, pt, a) { var x = pt.x - fp.x; var y = pt.y - fp.y; var xRot = x * Math.cos(a) + y * Math.sin(a); var yRot = y * Math.cos(a) - x * Math.sin(a); return new Point(fp.x+xRot,fp.y+yRot); } // Given two circles this method finds the intersection // point(s) of the two circles (if any exists) function circleCircleIntersectionPoints(c1, c2) { var r, R, d, dx, dy, cx, cy, Cx, Cy; if (c1.r < c2.r) { r = c1.r; R = c2.r; cx = c1.x; cy = c1.y; Cx = c2.x; Cy = c2.y; } else { r = c2.r; R = c1.r; Cx = c1.x; Cy = c1.y; cx = c2.x; cy = c2.y; } // Compute the vector <dx, dy> dx = cx - Cx; dy = cy - Cy; // Find the distance between two points. d = Math.sqrt( dx*dx + dy*dy ); // There are an infinite number of solutions // Seems appropriate to also return null if (d < EPS && Math.abs(R-r) < EPS) return []; // No intersection (circles centered at the // same place with different size) else if (d < EPS) return []; var x = (dx / d) * R + Cx; var y = (dy / d) * R + Cy; var P = new Point(x, y); // Single intersection (kissing circles) if (Math.abs((R+r)-d) < EPS || Math.abs(R-(r+d)) < EPS) return [P]; // No intersection. Either the small circle contained within // big circle or circles are simply disjoint. if ( (d+r) < R || (R+r < d) ) return []; var C = new Point(Cx, Cy); var angle = acossafe((r*r-d*d-R*R)/(-2.0*d*R)); var pt1 = rotatePoint(C, P, +angle); var pt2 = rotatePoint(C, P, -angle); return [pt1, pt2]; } |
为什么不使用以下7种您喜欢的过程语言(或可编程计算器!)呢?
假设给定了P0坐标(x0,y0),P1坐标(x1,y1),r0和r1,并且您想找到P3坐标(x3,y3):
1 2 3 4 5 6 7 | d=sqr((x1-x0)^2 + (y1-y0)^2) a=(r0^2-r1^2+d^2)/(2*d) h=sqr(r0^2-a^2) x2=x0+a*(x1-x0)/d y2=y0+a*(y1-y0)/d x3=x2+h*(y1-y0)/d // also x3=x2-h*(y1-y0)/d y3=y2-h*(x1-x0)/d // also y3=y2+h*(x1-x0)/d |
尝试这个;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | def ri(cr1,cr2,cp1,cp2): int1=[] int2=[] ori=0 if cp1[0]<cp2[0] and cp1[1]!=cp2[1]: p1=cp1 p2=cp2 r1=cr1 r2=cr2 if cp1[1]<cp2[1]: ori+=1 elif cp1[1]>cp2[1]: ori+=2 elif cp1[0]>cp2[0] and cp1[1]!=cp2[1]: p1=cp2 p2=cp1 r1=cr2 r2=cr1 if p1[1]<p2[1]: ori+=1 elif p1[1]>p2[1]: ori+=2 elif cp1[0]==cp2[0]: ori+=4 if cp1[1]>cp2[1]: p1=cp1 p2=cp2 r1=cr1 r2=cr2 elif cp1[1]<cp2[1]: p1=cp2 p2=cp1 r1=cr2 r2=cr1 elif cp1[1]==cp2[1]: ori+=3 if cp1[0]>cp2[0]: p1=cp2 p2=cp1 r1=cr2 r2=cr1 elif cp1[0]<cp2[0]: p1=cp1 p2=cp2 r1=cr1 r2=cr2 if ori==1:#+ D=calc_dist(p1,p2) tr=r1+r2 el=tr-D a=r1-el b=r2-el A=a+(el/2) B=b+(el/2) thta=math.degrees(math.acos(A/r1)) rs=p2[1]-p1[1] rn=p2[0]-p1[0] gd=rs/rn yint=p1[1]-((gd)*p1[0]) dty=calc_dist(p1,[0,yint]) aa=p1[1]-yint bb=math.degrees(math.asin(aa/dty)) d=90-bb e=180-d-thta g=(dty/math.sin(math.radians(e)))*math.sin(math.radians(thta)) f=(g/math.sin(math.radians(thta)))*math.sin(math.radians(d)) oty=yint+g h=f+r1 i=90-e j=180-90-i l=math.sin(math.radians(i))*h k=math.cos(math.radians(i))*h iy2=oty-l ix2=k int2.append(ix2) int2.append(iy2) m=90+bb n=180-m-thta p=(dty/math.sin(math.radians(n)))*math.sin(math.radians(m)) o=(p/math.sin(math.radians(m)))*math.sin(math.radians(thta)) q=p+r1 r=90-n s=math.sin(math.radians(r))*q t=math.cos(math.radians(r))*q otty=yint-o iy1=otty+s ix1=t int1.append(ix1) int1.append(iy1) elif ori==2:#- D=calc_dist(p1,p2) tr=r1+r2 el=tr-D a=r1-el b=r2-el A=a+(el/2) B=b+(el/2) thta=math.degrees(math.acos(A/r1)) rs=p2[1]-p1[1] rn=p2[0]-p1[0] gd=rs/rn yint=p1[1]-((gd)*p1[0]) dty=calc_dist(p1,[0,yint]) aa=yint-p1[1] bb=math.degrees(math.asin(aa/dty)) c=180-90-bb d=180-c-thta e=180-90-d f=math.tan(math.radians(e))*p1[0] g=math.sqrt(p1[0]**2+f**2) h=g+r1 i=180-90-e j=math.sin(math.radians(e))*h jj=math.cos(math.radians(i))*h k=math.cos(math.radians(e))*h kk=math.sin(math.radians(i))*h l=90-bb m=90-e tt=l+m+thta n=(dty/math.sin(math.radians(m)))*math.sin(math.radians(thta)) nn=(g/math.sin(math.radians(l)))*math.sin(math.radians(thta)) oty=yint-n iy1=oty+j ix1=k int1.append(ix1) int1.append(iy1) o=bb+90 p=180-o-thta q=90-p r=180-90-q s=(dty/math.sin(math.radians(p)))*math.sin(math.radians(o)) t=(s/math.sin(math.radians(o)))*math.sin(math.radians(thta)) u=s+r1 v=math.sin(math.radians(r))*u vv=math.cos(math.radians(q))*u w=math.cos(math.radians(r))*u ww=math.sin(math.radians(q))*u ix2=v otty=yint+t iy2=otty-w int2.append(ix2) int2.append(iy2) elif ori==3:#y D=calc_dist(p1,p2) tr=r1+r2 el=tr-D a=r1-el b=r2-el A=a+(el/2) B=b+(el/2) b=math.sqrt(r1**2-A**2) int1.append(p1[0]+A) int1.append(p1[1]+b) int2.append(p1[0]+A) int2.append(p1[1]-b) elif ori==4:#x D=calc_dist(p1,p2) tr=r1+r2 el=tr-D a=r1-el b=r2-el A=a+(el/2) B=b+(el/2) b=math.sqrt(r1**2-A**2) int1.append(p1[0]+b) int1.append(p1[1]-A) int2.append(p1[0]-b) int2.append(p1[1]-A) return [int1,int2] def calc_dist(p1,p2): return math.sqrt((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) |