What does ** (double star/asterisk) and * (star/asterisk) do for parameters?
在以下方法定义中,
1 2 | def foo(param1, *param2): def bar(param1, **param2): |
这是一个普通
给你想要的所有功能参数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | In [1]: def foo(*args): ...: for a in args: ...: print a ...: ...: In [2]: foo(1) 1 In [4]: foo(1,2,3) 1 2 3 |
想给你所有的
1 2 3 4 5 6 7 8 9 | In [5]: def bar(**kwargs): ...: for a in kwargs: ...: print a, kwargs[a] ...: ...: In [6]: bar(name='one', age=27) age 27 name one |
这两个成语可以让混合参数与正常和一些变量的一组固定的参数:
1 2 | def foo(kind, *args, **kwargs): pass |
另一个用法的成语是
1 2 3 4 5 6 7 8 9 | In [9]: def foo(bar, lee): ...: print bar, lee ...: ...: In [10]: l = [1,2] In [11]: foo(*l) 1 2 |
在Python中,它是可能的使用
1 2 | first, *rest = [1,2,3,4] first, *l, last = [1,2,3,4] |
因此Python 3添加新的语义(指PEP 3102):
1 2 | def func(arg1, arg2, arg3, *, kwarg1, kwarg2): pass |
搜索功能只接受3定位和所有的参数后,
它是值得的,你可以使用一
1 2 3 4 | def foo(x,y,z): print("x=" + str(x)) print("y=" + str(y)) print("z=" + str(z)) |
你可以做这样:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | >>> mylist = [1,2,3] >>> foo(*mylist) x=1 y=2 z=3 >>> mydict = {'x':1,'y':2,'z':3} >>> foo(**mydict) x=1 y=2 z=3 >>> mytuple = (1, 2, 3) >>> foo(*mytuple) x=1 y=2 z=3 |
注:一定要
1 2 3 4 5 | >>> mydict = {'x':1,'y':2,'z':3,'badnews':9} >>> foo(**mydict) Traceback (most recent call last): File"<stdin>", line 1, in <module> TypeError: foo() got an unexpected keyword argument 'badnews' |
单*意味着可以有任何数量的额外的定位参数。
*《双均值可以有任何数量的额外的命名参数。
用下面的代码:
1 2 3 4 5 6 7 8 9 10 | def foo(param1, *param2): print(param1) print(param2) def bar(param1, **param2): print(param1) print(param2) foo(1,2,3,4,5) bar(1,a=2,b=3) |
输出是
1 2 3 4 | 1 (2, 3, 4, 5) 1 {'a': 2, 'b': 3} |
What does
** (double star) and* (star) do for parameters
它们允许定义函数接受并允许用户传递任意数量的参数、位置(
您可以(并且应该)选择任何合适的名称,但是如果目的是让论点具有非特定的语义,那么
您还可以使用
接收参数的函数不必知道它们正在被扩展。好的。
例如,python 2的xrange并不明确地期望
1 2 3 | >>> x = xrange(3) # create our *args - an iterable of 3 integers >>> xrange(*x) # expand here xrange(0, 2, 2) |
作为另一个例子,我们可以在
1 2 3 4 | >>> foo = 'FOO' >>> bar = 'BAR' >>> 'this is foo, {foo} and bar, {bar}'.format(**locals()) 'this is foo, FOO and bar, BAR' |
python 3中的新功能:使用仅关键字参数定义函数
在
1 2 | def foo(arg, kwarg=None, *args, kwarg2=None, **kwargs): return arg, kwarg, args, kwarg2, kwargs |
用途:好的。
1 2 | >>> foo(1,2,3,4,5,kwarg2='kwarg2', bar='bar', baz='baz') (1, 2, (3, 4, 5), 'kwarg2', {'bar': 'bar', 'baz': 'baz'}) |
另外,
1 2 | def foo(arg, kwarg=None, *, kwarg2=None, **kwargs): return arg, kwarg, kwarg2, kwargs |
这里,
1 2 | >>> foo(1,2,kwarg2='kwarg2', foo='foo', bar='bar') (1, 2, 'kwarg2', {'foo': 'foo', 'bar': 'bar'}) |
我们不能再接受无限制的位置参数,因为我们没有
1 2 3 4 5 | >>> foo(1,2,3,4,5, kwarg2='kwarg2', foo='foo', bar='bar') Traceback (most recent call last): File"<stdin>", line 1, in <module> TypeError: foo() takes from 1 to 2 positional arguments but 5 positional arguments (and 1 keyword-only argument) were given |
同样,更简单地说,这里我们要求
1 2 | def bar(*, kwarg=None): return kwarg |
在这个例子中,我们看到,如果我们试图按位置传递
1 2 3 4 | >>> bar('kwarg') Traceback (most recent call last): File"<stdin>", line 1, in <module> TypeError: bar() takes 0 positional arguments but 1 was given |
我们必须显式地将
1 2 | >>> bar(kwarg='kwarg') 'kwarg' |
python 2兼容演示
我们通常在不知道函数将接收什么或传递多少参数时使用这些参数,有时甚至单独命名每个变量都会变得非常混乱和冗余(但在这种情况下,通常显式优于隐式)。好的。
例1好的。
下面的函数描述如何使用它们,并演示行为。注:命名的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | def foo(a, b=10, *args, **kwargs): ''' this function takes required argument a, not required keyword argument b and any number of unknown positional arguments and keyword arguments after ''' print('a is a required argument, and its value is {0}'.format(a)) print('b not required, its default value is 10, actual value: {0}'.format(b)) # we can inspect the unknown arguments we were passed: # - args: print('args is of type {0} and length {1}'.format(type(args), len(args))) for arg in args: print('unknown arg: {0}'.format(arg)) # - kwargs: print('kwargs is of type {0} and length {1}'.format(type(kwargs), len(kwargs))) for kw, arg in kwargs.items(): print('unknown kwarg - kw: {0}, arg: {1}'.format(kw, arg)) # But we don't have to know anything about them # to pass them to other functions. print('Args or kwargs can be passed without knowing what they are.') # max can take two or more positional args: max(a, b, c...) print('e.g. max(a, b, *args) {0}'.format( max(a, b, *args))) kweg = 'dict({0})'.format( # named args same as unknown kwargs ', '.join('{k}={v}'.format(k=k, v=v) for k, v in sorted(kwargs.items()))) print('e.g. dict(**kwargs) (same as {kweg}) returns: {0}'.format( dict(**kwargs), kweg=kweg)) |
我们可以通过
1 | foo(a, b=10, *args, **kwargs) |
让我们用
哪些印刷品:好的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | a is a required argument, and its value is 1 b not required, its default value is 10, actual value: 2 args is of type <type 'tuple'> and length 2 unknown arg: 3 unknown arg: 4 kwargs is of type <type 'dict'> and length 3 unknown kwarg - kw: e, arg: 5 unknown kwarg - kw: g, arg: 7 unknown kwarg - kw: f, arg: 6 Args or kwargs can be passed without knowing what they are. e.g. max(a, b, *args) 4 e.g. dict(**kwargs) (same as dict(e=5, f=6, g=7)) returns: {'e': 5, 'g': 7, 'f': 6} |
例2好的。
我们也可以使用另一个函数来调用它,在这个函数中我们只提供
1 2 3 4 5 | def bar(a): b, c, d, e, f = 2, 3, 4, 5, 6 # dumping every local variable into foo as a keyword argument # by expanding the locals dict: foo(**locals()) |
1 2 3 4 5 6 7 8 9 10 11 12 13 | a is a required argument, and its value is 100 b not required, its default value is 10, actual value: 2 args is of type <type 'tuple'> and length 0 kwargs is of type <type 'dict'> and length 4 unknown kwarg - kw: c, arg: 3 unknown kwarg - kw: e, arg: 5 unknown kwarg - kw: d, arg: 4 unknown kwarg - kw: f, arg: 6 Args or kwargs can be passed without knowing what they are. e.g. max(a, b, *args) 100 e.g. dict(**kwargs) (same as dict(c=3, d=4, e=5, f=6)) returns: {'c': 3, 'e': 5, 'd': 4, 'f': 6} |
例3:装饰材料的实际应用好的。
好吧,也许我们还没有看到实用程序。所以假设您在区分代码之前和/或之后有几个具有冗余代码的函数。以下命名函数只是用于说明目的的伪代码。好的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | def foo(a, b, c, d=0, e=100): # imagine this is much more code than a simple function call preprocess() differentiating_process_foo(a,b,c,d,e) # imagine this is much more code than a simple function call postprocess() def bar(a, b, c=None, d=0, e=100, f=None): preprocess() differentiating_process_bar(a,b,c,d,e,f) postprocess() def baz(a, b, c, d, e, f): ... and so on |
我们可以用不同的方法来处理这个问题,但是我们当然可以用一个修饰器来提取冗余,因此下面的示例演示了
1 2 3 4 5 6 7 8 9 | def decorator(function): '''function to wrap other functions with a pre- and postprocess''' @functools.wraps(function) # applies module, name, and docstring to wrapper def wrapper(*args, **kwargs): # again, imagine this is complicated, but we only write it once! preprocess() function(*args, **kwargs) postprocess() return wrapper |
现在,每一个被包装的函数都可以写得更简洁,因为我们已经计算出了冗余度:好的。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | @decorator def foo(a, b, c, d=0, e=100): differentiating_process_foo(a,b,c,d,e) @decorator def bar(a, b, c=None, d=0, e=100, f=None): differentiating_process_bar(a,b,c,d,e,f) @decorator def baz(a, b, c=None, d=0, e=100, f=None, g=None): differentiating_process_baz(a,b,c,d,e,f, g) @decorator def quux(a, b, c=None, d=0, e=100, f=None, g=None, h=None): differentiating_process_quux(a,b,c,d,e,f,g,h) |
通过分解我们的代码(
让我们首先了解什么是位置参数和关键字参数。下面是带有位置参数的函数定义示例。
1 2 3 4 5 6 7 8 9 10 | def test(a,b,c): print(a) print(b) print(c) test(1,2,3) #output: 1 2 3 |
这是一个带有位置参数的函数定义。您也可以使用关键字/命名参数来调用它:
1 2 3 4 5 6 7 8 9 10 | def test(a,b,c): print(a) print(b) print(c) test(a=1,b=2,c=3) #output: 1 2 3 |
现在让我们研究一个带有关键字参数的函数定义示例:
1 2 3 4 5 6 7 8 9 10 11 12 | def test(a=0,b=0,c=0): print(a) print(b) print(c) print('-------------------------') test(a=1,b=2,c=3) #output : 1 2 3 ------------------------- |
也可以使用位置参数调用此函数:
1 2 3 4 5 6 7 8 9 10 11 12 | def test(a=0,b=0,c=0): print(a) print(b) print(c) print('-------------------------') test(1,2,3) # output : 1 2 3 --------------------------------- |
所以我们现在知道了带有位置参数和关键字参数的函数定义。
现在让我们研究一下‘*’操作符和‘*’操作符。
请注意,这些操作员可用于两个领域:
a)功能调用
b)功能定义
在函数调用中使用"*"运算符和"*"运算符。
让我们直接举一个例子,然后讨论它。
1 2 3 4 5 6 7 8 9 10 11 12 13 | def sum(a,b): #receive args from function calls as sum(1,2) or sum(a=1,b=2) print(a+b) my_tuple = (1,2) my_list = [1,2] my_dict = {'a':1,'b':2} # Let us unpack data structure of list or tuple or dict into arguments with help of '*' operator sum(*my_tuple) # becomes same as sum(1,2) after unpacking my_tuple with '*' sum(*my_list) # becomes same as sum(1,2) after unpacking my_list with '*' sum(**my_dict) # becomes same as sum(a=1,b=2) after unpacking by '**' # output is 3 in all three calls to sum function. |
所以记住
当函数调用中使用"*"或"*"运算符时-
"*"运算符将数据结构(如列表或元组)解包为函数定义所需的参数。
"**"运算符将字典解包为函数定义所需的参数。
现在让我们研究一下函数定义中使用的"*"运算符。例子:
1 2 3 4 5 6 7 8 9 | def sum(*args): #pack the received positional args into data structure of tuple. after applying '*' - def sum((1,2,3,4)) sum = 0 for a in args: sum+=a print(sum) sum(1,2,3,4) #positional args sent to function sum #output: 10 |
在函数定义中,"*"运算符将接收到的参数打包成一个元组。
现在让我们看看函数定义中使用的"**"示例:
1 2 3 4 5 6 7 | def sum(**args): #pack keyword args into datastructure of dict after applying '**' - def sum({a:1,b:2,c:3,d:4}) sum=0 for k,v in args.items(): sum+=v print(sum) sum(a=1,b=2,c=3,d=4) #positional args sent to function sum |
在函数定义中,"**"运算符将接收到的参数打包到字典中。
所以请记住:
在函数调用中,"*"将元组或列表的数据结构解包为位置参数或关键字参数,以便由函数定义接收。
在函数调用中,"**"将字典的数据结构解包为位置参数或关键字参数,以便由函数定义接收。
在函数定义中,"*"将位置参数打包为元组。
在函数定义中,**'将关键字参数打包到字典中。
对于你们这些通过例子学习的人!
让我们通过定义一个函数来说明这一点,它采用两个正态变量
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | def f(x, y, *myArgs, **myKW): print("# x = {}".format(x)) print("# y = {}".format(y)) print("# myArgs = {}".format(myArgs)) print("# myKW = {}".format(myKW)) print("# ----------------------------------------------------------------------") # Define a list for demonstration purposes myList = ["Left","Right","Up","Down"] # Define a dictionary for demonstration purposes myDict = {"Wubba":"lubba","Dub":"dub <hr><P>从Python的文档:</p><blockquote> <p> If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless a formal parameter using the syntax"*identifier" is present; in this case, that formal parameter receives a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments). </p> <p> If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a formal parameter using the syntax"**identifier" is present; in this case, that formal parameter receives a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values), or a (new) empty dictionary if there were no excess keyword arguments. </p> </blockquote><hr><P>虽然在python 3中已经扩展了star/splat操作符的使用,但我喜欢下表,因为它与这些操作符与函数的使用有关。splat运算符既可用于函数构造,也可用于函数调用:</P>[cc lang="python"] In function construction In function call ======================================================================= | def f(*args): | def f(a, b): *args | for arg in args: | return a + b | print(arg) | args = (1, 2) | f(1, 2) | f(*args) ----------|--------------------------------|--------------------------- | def f(a, b): | def f(a, b): **kwargs | return a + b | return a + b | def g(**kwargs): | kwargs = dict(a=1, b=2) | return f(**kwargs) | f(**kwargs) | g(a=1, b=2) | ----------------------------------------------------------------------- |
这确实是为了总结洛林·霍克斯坦的答案,但我觉得这很有帮助。
你可以在Python 3.5,所以使用本
1 2 3 4 5 6 7 8 9 10 | >>> (0, *range(1, 4), 5, *range(6, 8)) (0, 1, 2, 3, 5, 6, 7) >>> [0, *range(1, 4), 5, *range(6, 8)] [0, 1, 2, 3, 5, 6, 7] >>> {0, *range(1, 4), 5, *range(6, 8)} {0, 1, 2, 3, 5, 6, 7} >>> d = {'one': 1, 'two': 2, 'three': 3} >>> e = {'six': 6, 'seven': 7} >>> {'zero': 0, **d, 'five': 5, **e} {'five': 5, 'seven': 7, 'two': 2, 'one': 1, 'three': 3, 'six': 6, 'zero': 0} |
它也允许一个多可迭代量unpacked A功能单一的呼叫。
1 2 | >>> range(*[1, 10], *[2]) range(1, 10, 2) |
(感谢mgilson的PEP的链接。)
我想举一个别人没有提到的例子
*也可以打开发电机的包装
python3文档中的示例
1 2 3 4 | x = [1, 2, 3] y = [4, 5, 6] unzip_x, unzip_y = zip(*zip(x, y)) |
解压x将是[1,2,3],解压y将是[4,5,6]
zip()接收多个iretable参数,并返回一个生成器。
1 | zip(*zip(x,y)) -> zip((1, 4), (2, 5), (3, 6)) |
除了函数调用,*和* kwargs args是一流的。所以有hierarchies和避免
例如,
1 2 3 4 5 6 7 8 | def __init__(self, *args, **kwargs): for attribute_name, value in zip(self._expected_attributes, args): setattr(self, attribute_name, value) if kwargs.has_key(attribute_name): kwargs.pop(attribute_name) for attribute_name in kwargs.viewkeys(): setattr(self, attribute_name, kwargs[attribute_name]) |
一个CAN然后收藏指正
1 2 3 4 5 | class RetailItem(Item): _expected_attributes = Item._expected_attributes + ['name', 'price', 'category', 'country_of_origin'] class FoodItem(RetailItem): _expected_attributes = RetailItem._expected_attributes + ['expiry_date'] |
然后是instantiated AS的收藏指正
1 2 3 4 5 | food_item = FoodItem(name = 'Jam', price = 12.0, category = 'Foods', country_of_origin = 'US', expiry_date = datetime.datetime.now()) |
因此,一个新的属性这一收藏指正只理解这类的实例可以调用库收藏指正
1 2 3 4 5 6 | class ElectronicAccessories(RetailItem): _expected_attributes = RetailItem._expected_attributes + ['specifications'] # Depend on args and kwargs to populate the data as needed. def __init__(self, specifications = None, *args, **kwargs): self.specifications = specifications # Rest of attributes will make sense to parent class. super(ElectronicAccessories, self).__init__(*args, **kwargs) |
可以instatiated AS
1 2 3 4 5 | usb_key = ElectronicAccessories(name = 'Sandisk', price = '$6.00', category = 'Electronics', country_of_origin = 'CN', specifications = '4GB USB 2.0/USB 3.0') |
您的代码在这里
Used like the following:
1) single *
1 2 3 4 5 | def foo(*args): for arg in args: print(arg) foo("two", 3) |
输出:
1 2 | two 3 |
2)现在是
1 2 3 4 5 | def bar(**kwargs): for key in kwargs: print(key, kwargs[key]) bar(dic1="two", dic2=3) |
输出:
1 2 | dic1 two dic2 3 |
这个例子可以帮助您同时记住Python中的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | class base(object): def __init__(self, base_param): self.base_param = base_param class child1(base): # inherited from base class def __init__(self, child_param, *args) # *args for non-keyword args self.child_param = child_param super(child1, self).__init__(*args) # call __init__ of the base class and initialize it with a NON-KEYWORD arg class child2(base): def __init__(self, child_param, **kwargs): self.child_param = child_param super(child2, self).__init__(**kwargs) # call __init__ of the base class and initialize it with a KEYWORD arg c1 = child1(1,0) c2 = child2(1,base_param=0) print c1.base_param # 0 print c1.child_param # 1 print c2.base_param # 0 print c2.child_param # 1 |
在函数中同时使用这两者的一个好例子是:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | >>> def foo(*arg,**kwargs): ... print arg ... print kwargs >>> >>> a = (1, 2, 3) >>> b = {'aa': 11, 'bb': 22} >>> >>> >>> foo(*a,**b) (1, 2, 3) {'aa': 11, 'bb': 22} >>> >>> >>> foo(a,**b) ((1, 2, 3),) {'aa': 11, 'bb': 22} >>> >>> >>> foo(a,b) ((1, 2, 3), {'aa': 11, 'bb': 22}) {} >>> >>> >>> foo(a,*b) ((1, 2, 3), 'aa', 'bb') {} |
DR
它将传递给函数的参数分别打包到函数体内部的
1 2 | def func(*args, **kwds): # do stuff |
它可以用任意数量的参数和关键字参数调用。非关键字参数打包到函数体内部名为
1 | func("this","is a list of","non-keyowrd","arguments", keyword="ligma", options=[1,2,3]) |
现在在函数体中,当调用函数时,有两个局部变量:
这也可以反向工作,即从主叫方。例如,如果您有一个函数定义为:
1 2 | def f(a, b, c, d=1, e=10): # do stuff |
您可以通过解包调用范围中的iterables或映射来调用它:
1 2 3 4 5 | iterable = [1, 20, 500] mapping = {"d" : 100,"e": 3} f(*iterable, **mapping) # That call is equivalent to f(1, 20, 500, d=100, e=3) |
1 2 3 4 5 6 7 | def args(normal_arg, *argv): print ("normal argument:",normal_arg) for arg in argv: print("Argument in list of arguments from *argv:", arg) args('animals','fish','duck','bird') |
将产生:
1 2 3 4 | normal argument: animals Argument in list of arguments from *argv: fish Argument in list of arguments from *argv: duck Argument in list of arguments from *argv: bird |
1 2 3 4 5 6 | def who(**kwargs): if kwargs is not None: for key, value in kwargs.items(): print ("Your %s is %s." %(key,value)) who (name="Nikola", last_name="Tesla", birthday ="7.10.1856", birthplace ="Croatia") |
将产生:
1 2 3 4 | Your name is Nikola. Your last_name is Tesla. Your birthday is 7.10.1856. Your birthplace is Croatia. |
def foo(param1, *param2): 是一种可以接受*param2 任意数量值的方法。def bar(param1, **param2): 是一种使用*param2 的键可以接受任意数量的值的方法。param1 是一个简单的参数。
例如,在Java中实现VARARGS的语法如下:
1 2 3 | accessModifier methodName(datatype… arg) { // method body } |