关于性能:如何使这个python代码块简短有效

How to make this Block of python code short and efficient

我是编程和Python的新手。我正在解决一个问题。我找到了解决办法,但似乎太慢了。

1
2
3
4
5
6
7
8
9
10
    if n % 2 == 0 and n % 3 == 0 and\
       n % 4 == 0 and n % 5 == 0 and\
       n % 6 == 0 and n % 7 == 0 and\
       n % 8 == 0 and n % 9 == 0 and\
       n % 10 == 0 and n % 11 == 0 and\
       n % 12 == 0 and n % 13 == 0 and\
       n % 14 == 0 and n % 15 == 0 and\
       n % 16 == 0 and n % 17 == 0 and\
       n % 18 == 0 and n % 19 == 0 and\
       n % 20 == 0:

这是用来检查n是否可以被2到20之间的所有数字整除的代码。

我如何使它简短而有效。


短期和高效之间有贸易。

短路是if all(n % i == 0 for i in range(2, 21)):

有效的方式是要知道,象n % 20 == 0这样的事情也意味着n % f == 0在哪里f是20个因素。例如,你可以把EDOCX1所以你会在两个比赛中结束在这样做的时候,你会发现一个模式,你会发现整个说法已被减至if n % 232792560 == 0。但现在已经深埋了20个,所以如果你需要不同的上限,很难找到。

所以你看,高效率的方式不是那么容易读取和保持。那就去找你最适合的要求


这是一个聪明的方法。如果n是每一个积分的范围(1,21),那么它必须是这些积分的最小共同的多个。

你可以用GCD(GCD)逐渐计算一组数字的LCM。您可以从fractions中导入GCD函数,或者直接在您的代码中实现。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
def gcd(a, b):
    ''' Greatest Common Divisor '''
    while b:
        a, b = b, a % b
    return a

def lcm(a, b):
    ''' Least Common Multiple '''
    return a * b // gcd(a, b)

# Compute the LCM of range(1, 21)
n = 2
for i in range(3, 21):
    n = lcm(n, i)

lcm20 = n
print('LCM =', lcm20)
#test
for i in range(1, 21):
    print(i, lcm20 % i)

输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
LCM = 232792560
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0

现在,测试任何n是可以分为所有数字的范围(1,21)

1
n % lcm20 == 0

或硬编码你的脚本中的常数:

1
2
# 232792560 is the LCM of 1..20
n % 232792560 == 0

作为安东·舍伍德的一部分,我们如何加快寻找液晶的过程,只需把液晶从半径上取出来。这是因为每一个数字在范围的下半部是一个除数,在范围的上半部是一个除数。

我们甚至可以通过连接GCD和LCM计算来改进速度,而不是呼叫功能来完成这些操作。Python功能呼叫通常慢于C功能呼叫,这是由超负荷引起的。

Yakk mentions an alternative approach to find the required LCM:calculate the product of the prime powers in the range.如果范围宽(40或40以上),这是很快的,但对于小数字的简单LCM环路是很快的。

下面是比较这些不同方法的速度的代码。这个脚本在Python2号和3号上运行我在Python2.6号和Python3.6号上测试过它利用罗伯特·威廉·汉克斯的一份初步清单功能来执行雅克的建议。我修改了罗伯特的密码,使它与Python3号相容。我想有一个更有效的方法来找到原始的力量注:

我提前指出,在fractions模块中有GCD功能。我用它做了一些时间的测试,但它显然比我的密码慢。这是因为它在论据上是错误的检查。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python3

''' Least Common Multiple of the numbers in range(1, m)

    Speed tests

    Written by PM 2Ring 2016.08.04
'''



from __future__ import print_function
from timeit import Timer
#from fractions import gcd

def gcd(a, b):
    ''' Greatest Common Divisor '''
    while b:
        a, b = b, a % b
    return a

def lcm(a, b):
    ''' Least Common Multiple '''
    return a * b // gcd(a, b)

def primes(n):
    ''' Returns a list of primes < n '''
    # By Robert William Hanks, from https://stackoverflow.com/a/3035188/4014959
    sieve = [True] * (n//2)
    for i in range(3, int(n ** 0.5) + 1, 2):
        if sieve[i//2]:
            sieve[i*i//2::i] = [False] * ((n - i*i - 1) // (2*i) + 1)
    return [2] + [2*i + 1 for i in range(1, n//2) if sieve[i]]

def lcm_range_PM(m):
    ''' The LCM of range(1, m) '''
    n = 1
    for i in range(2, m):
        n = lcm(n, i)
    return n

def lcm_range_AS(m):
    ''' The LCM of range(1, m) '''
    n = m // 2
    for i in range(n + 1, m):
        n = lcm(n, i)
    return n

def lcm_range_fast(m):
    ''' The LCM of range(1, m) '''
    n = m // 2
    for i in range(n + 1, m):
        a, b = n, i
        while b:
            a, b = b, a % b
        n = n * i // a
    return n

def lcm_range_primes(m):
    n = 1
    for p in primes(m):
        a = p
        while a < m:
            a *= p
        n *= a // p
    return n

funcs = (
    lcm_range_PM,
    lcm_range_AS,
    lcm_range_fast,
    lcm_range_primes
)

def verify(hi):
    ''' Verify that all the functions give the same result '''
    for i in range(2, hi + 1):
        a = [func(i) for func in funcs]
        a0 = a[0]
        assert all(u == a0 for u in a[1:]), (i, a)
    print('ok')

def time_test(loops, reps):
    ''' Print timing stats for all the functions '''
    timings = []
    for func in funcs:
        fname = func.__name__
        setup = 'from __main__ import num, ' + fname
        cmd = fname + '(num)'
        t = Timer(cmd, setup)
        result = t.repeat(reps, loops)
        result.sort()
        timings.append((result, fname))

    timings.sort()
    for result, fname in timings:
        print('{0:16} {1}'.format(fname, result))

verify(500)

reps = 3
loops = 8192
num = 2
for _ in range(10):
    print('
num = {0}, loops = {1}'
.format(num, loops))
    time_test(loops, reps)
    num *= 2
    loops //= 2

print('
'
+ '- ' * 40)

funcs = (
    lcm_range_fast,
    lcm_range_primes
)

loops = 1000
for num in range(30, 60):
    print('
num = {0}, loops = {1}'
.format(num, loops))
    time_test(loops, reps)

输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
ok

num = 2, loops = 8192
lcm_range_PM     [0.013914467999711633, 0.01393848999941838, 0.023966414999449626]
lcm_range_fast   [0.01656803699916054, 0.016577592001340236, 0.016578077998929075]
lcm_range_AS     [0.01738608899904648, 0.017602848000024096, 0.01770572900022671]
lcm_range_primes [0.0979132459997345, 0.09863009199943917, 0.10133290699923236]

num = 4, loops = 4096
lcm_range_fast   [0.01580070299860381, 0.01581421999981103, 0.016406731001552544]
lcm_range_AS     [0.020135083001150633, 0.021132826999746612, 0.021589830999801052]
lcm_range_PM     [0.02821666900126729, 0.029041511999821523, 0.036708851001094445]
lcm_range_primes [0.06287289499960025, 0.06381634699937422, 0.06406087200048205]

num = 8, loops = 2048
lcm_range_fast   [0.015360695999333984, 0.02138442599971313, 0.02630166100061615]
lcm_range_AS     [0.02104746699842508, 0.021742354998423252, 0.022648989999652258]
lcm_range_PM     [0.03499621999981173, 0.03546843599906424, 0.042924503999529406]
lcm_range_primes [0.03741390599861916, 0.03865244000007806, 0.03959638999913295]

num = 16, loops = 1024
lcm_range_fast   [0.015973221999956877, 0.01600381199932599, 0.01603960700049356]
lcm_range_AS     [0.023003745000096387, 0.023848425998949097, 0.024875303000953863]
lcm_range_primes [0.028887982000014745, 0.029422679001072538, 0.029940758000520873]
lcm_range_PM     [0.03780223299872887, 0.03925949299991771, 0.04462484900068375]

num = 32, loops = 512
lcm_range_fast   [0.018606906000059098, 0.02557359899947187, 0.03725786200084258]
lcm_range_primes [0.021675119000065024, 0.022790905999499955, 0.03934840099827852]
lcm_range_AS     [0.025330593998660333, 0.02545427500081132, 0.026093265998497372]
lcm_range_PM     [0.044320442000753246, 0.044836185001258855, 0.05193238799984101]

num = 64, loops = 256
lcm_range_primes [0.01650579099987226, 0.02443148000020301, 0.033489004999864846]
lcm_range_fast   [0.018367127000601613, 0.019002625000211992, 0.01955779200034158]
lcm_range_AS     [0.026258470001266687, 0.04113643799973943, 0.0436801750001905]
lcm_range_PM     [0.04854909000096086, 0.054864030998942326, 0.0797669980001956]

num = 128, loops = 128
lcm_range_primes [0.013294352000229992, 0.013383581999732996, 0.024317635999977938]
lcm_range_fast   [0.02098568399924261, 0.02108044199849246, 0.03272008299973095]
lcm_range_AS     [0.028861763999884715, 0.0399744570004259, 0.04660961700028565]
lcm_range_PM     [0.05302166500041494, 0.059346372001527925, 0.07757829000001948]

num = 256, loops = 64
lcm_range_primes [0.010487794999789912, 0.010514846000660327, 0.01055656300013652]
lcm_range_fast   [0.02619308099929185, 0.02637610199963092, 0.03755473099954543]
lcm_range_AS     [0.03422451699952944, 0.03513622399987071, 0.05206341099983547]
lcm_range_PM     [0.06851765200008231, 0.073690847000762, 0.07841700100107118]

num = 512, loops = 32
lcm_range_primes [0.009275872000216623, 0.009292663999076467, 0.009309271999882185]
lcm_range_fast   [0.03759837500001595, 0.03774761099884927, 0.0383951439998782]
lcm_range_AS     [0.04527828100071929, 0.046646228000099654, 0.0569303670017689]
lcm_range_PM     [0.11064135100059502, 0.12738902800083451, 0.13843623499997193]

num = 1024, loops = 16
lcm_range_primes [0.009248070000467123, 0.00931658900117327, 0.010279963000357384]
lcm_range_fast   [0.05642254200029129, 0.05663530499987246, 0.05796714499956579]
lcm_range_AS     [0.06509247900066839, 0.0652738099997805, 0.0658949799999391]
lcm_range_PM     [0.11376448099872505, 0.11652833600055601, 0.12083648199950403]

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

num = 30, loops = 1000
lcm_range_fast   [0.03275446999941778, 0.033530079999763984, 0.04002811799909978]
lcm_range_primes [0.04062690899991139, 0.040886697999667376, 0.04130547800014028]

num = 31, loops = 1000
lcm_range_fast   [0.03423191600086284, 0.039976395999474335, 0.04078094900069118]
lcm_range_primes [0.04053011599899037, 0.04140578700025799, 0.04566663300101936]

num = 32, loops = 1000
lcm_range_fast   [0.036124262000157614, 0.036700047998238006, 0.04392546200142533]
lcm_range_primes [0.042666604998885305, 0.04393434200028423, 0.05142524700022477]

num = 33, loops = 1000
lcm_range_fast   [0.03875456000059785, 0.03997290300139866, 0.044469664000644116]
lcm_range_primes [0.04280027899949346, 0.0437891679994209, 0.04381238600035431]

num = 34, loops = 1000
lcm_range_fast   [0.038203157999305404, 0.03937257799952931, 0.04531203700025799]
lcm_range_primes [0.043273317998682614, 0.043349457999283914, 0.04420187600044301]

num = 35, loops = 1000
lcm_range_fast   [0.04228670399970724, 0.04346491300020716, 0.047442203998798504]
lcm_range_primes [0.04332462999991549, 0.0433610400014004, 0.04525857199951133]

num = 36, loops = 1000
lcm_range_fast   [0.04175829099949624, 0.04217126499861479, 0.046840714998324984]
lcm_range_primes [0.04339772299863398, 0.04360795700085873, 0.04453475599984813]

num = 37, loops = 1000
lcm_range_fast   [0.04231068799890636, 0.04373836499871686, 0.05010528200000408]
lcm_range_primes [0.04371378700125206, 0.04463105400100176, 0.04481986299833807]

num = 38, loops = 1000
lcm_range_fast   [0.042841554000915494, 0.043649038998410106, 0.04868016199907288]
lcm_range_primes [0.04571479200058093, 0.04654245399979118, 0.04671720700025617]

num = 39, loops = 1000
lcm_range_fast   [0.04469198100014182, 0.04786454099848925, 0.05639159299971652]
lcm_range_primes [0.04572433999965142, 0.04583652600013011, 0.046649005000290344]

num = 40, loops = 1000
lcm_range_fast   [0.044788433999201516, 0.046223339000789565, 0.05302252199908253]
lcm_range_primes [0.045482261000870494, 0.04680115900009696, 0.046941823999077315]

num = 41, loops = 1000
lcm_range_fast   [0.04650144500010356, 0.04783133000091766, 0.05405569400136301]
lcm_range_primes [0.04678159699869866, 0.046870936999766855, 0.04726529199979268]

num = 42, loops = 1000
lcm_range_fast   [0.04772527699969942, 0.04824955299955036, 0.05483534199993301]
lcm_range_primes [0.0478546140002436, 0.048954233001495595, 0.04905354400034412]

num = 43, loops = 1000
lcm_range_primes [0.047872637000182294, 0.048093739000250935, 0.048502418998396024]
lcm_range_fast   [0.04906317900167778, 0.05292572700091114, 0.09274570399975346]

num = 44, loops = 1000
lcm_range_primes [0.049750300000596326, 0.050272532000235515, 0.05087747600009607]
lcm_range_fast   [0.050906279000628274, 0.05109869400075695, 0.05820328499976313]

num = 45, loops = 1000
lcm_range_primes [0.050158660000306554, 0.050309066000409075, 0.054478109999763547]
lcm_range_fast   [0.05236714599959669, 0.0539534259987704, 0.058996140000090236]

num = 46, loops = 1000
lcm_range_primes [0.049894845999006066, 0.0512076260001777, 0.051318084999365965]
lcm_range_fast   [0.05081920200063905, 0.051397655999608105, 0.05722950699964713]

num = 47, loops = 1000
lcm_range_primes [0.04971165599999949, 0.05024208400027419, 0.051092388999677496]
lcm_range_fast   [0.05388393700013694, 0.05502788499870803, 0.05994341699988581]

num = 48, loops = 1000
lcm_range_primes [0.0517014939996443, 0.05279760400117084, 0.052917389999493025]
lcm_range_fast   [0.05402479099939228, 0.055251746000067214, 0.06128628700025729]

num = 49, loops = 1000
lcm_range_primes [0.05412415899991174, 0.05474224499994307, 0.05610057699959725]
lcm_range_fast   [0.05757830900074623, 0.0590323519991216, 0.06310263200066402]

num = 50, loops = 1000
lcm_range_primes [0.054892387001018506, 0.05504404100065585, 0.05610281799999939]
lcm_range_fast   [0.0588886920013465, 0.0594741389995761, 0.06682244199873821]

num = 51, loops = 1000
lcm_range_primes [0.05582956999933231, 0.055921465000210446, 0.06004790299994056]
lcm_range_fast   [0.060586288000195054, 0.061715600999377784, 0.06733965300009004]

num = 52, loops = 1000
lcm_range_primes [0.0557458109997242, 0.05669860099988, 0.056761407999147195]
lcm_range_fast   [0.060323355999571504, 0.06177857100010442, 0.06778404599936039]

num = 53, loops = 1000
lcm_range_primes [0.05501838899908762, 0.05541463699955784, 0.0561610999993718]
lcm_range_fast   [0.06281833000139159, 0.06334177999997337, 0.06843207200108736]

num = 54, loops = 1000
lcm_range_primes [0.057314272000439814, 0.059501444000488846, 0.060004871998899034]
lcm_range_fast   [0.06634221600143064, 0.06662889200015343, 0.07153233899953193]

num = 55, loops = 1000
lcm_range_primes [0.05790564500057371, 0.05824322199987364, 0.05863306900027965]
lcm_range_fast   [0.06693624800027465, 0.06784769100158883, 0.07562533499913116]

num = 56, loops = 1000
lcm_range_primes [0.057219010001063, 0.05858367799919506, 0.06246676000046136]
lcm_range_fast   [0.06854197999928147, 0.06999059400004626, 0.07505119899906276]

num = 57, loops = 1000
lcm_range_primes [0.05746709300001385, 0.0587476679993415, 0.0606189070003893]
lcm_range_fast   [0.07094627400147147, 0.07241532700027165, 0.07868066799892404]

num = 58, loops = 1000
lcm_range_primes [0.0576490580006066, 0.058481812999161775, 0.05857339500107628]
lcm_range_fast   [0.07127979200049595, 0.07549924399972952, 0.07849203499972646]

num = 59, loops = 1000
lcm_range_primes [0.057503377998727956, 0.058632499998566345, 0.060360438999850885]
lcm_range_fast   [0.07332589399993594, 0.07625177999943844, 0.08087236799838138]

此时间表信息是用Python 3.6运行在一个古老的2GHZ Pentium IV机器上的Linux Debian衍生物上产生的。


1
if all(n % i == 0 for i in range(2, 21)):

如果所有的元素都被评估为TrueFalse其他。部分返回一个可重复的19个TrueFalse的价值,取决于n是否可通过相应的i分解。


建造在所有的帮助。

Return True if all elements of the iterable are true (or if the iterable is empty).

ZZU1


为了品种的不同,你可以用一个环路

1
2
3
4
5
6
7
test = True
for modulus in range(2, 21):
    if n % modulus != 0:
        test = False
        break
if test:
    # Do stuff

如果你和for相处愉快,你可以通过

1
2
3
4
5
for modulus in range(2, 21):
    if n % modulus != 0:
        break
else:
    # Do stuff

虽然模式可能不寻常,但你不想用它。

另一个选择是写一个帮助函数

1
2
3
4
5
6
7
8
def is_divisible_by_integers_up_to(n, bound):
    for modulus in range(2, bound + 1):
        if n % modulus != 0:
            return False
    return True

if is_divisible_by_integers_up_to(n, 20):
    # Do stuff

然而,这一特别的例子很简单,以致于all与一个发生器的表达,如在其他答案中描述的,是最好的前进方式。


这只是数学作弊使用诸如n %"LCM(1,2,...,20) == 0之类的东西:

1
2
if n % 232792560 == 0:
    #do whatever you want


上述许多代码示例较短,但(可能)效率不够:

1
2
3
4
n%2 == 0 =>
    n%4 6 8... ==0
n%3 == 0 =>
    n%3 6 9... ==0

我们只能使用素数检查范围:

1
if all(n % i == 0 for i in [2,3,5,7,11,13,17,19])

此外,如果n将2和20相除,则将2和20的LCM相除。


你需要一个条件,当所有分部都给零分时,评价是真实的。两种解决办法如此之远,建议不要要求这样做。我怀疑你需要的条件

1
if not any(n % i for i in range(2, 21)):

与以前的答案类似:

1
2
3
4
import operator
x = 232792560
if reduce(operator.__and__, [x % n == 0 for n in xrange(2, 21, 2)]):
    print("ok")

我自己也是一个非常轻量级的python用户,我不知道所有这些。这些解决方案相当酷(而且可能比我要发布的解决方案效率更高)。但是,如果你想看到另一种方法,这里有另一种选择:

1
2
3
4
5
def IsDivUpTo20(n):
   for i in range(2, 21):
      if n % i != 0:
         return False
   return True

像这样称呼它

1
2
3
4
5
if IsDivUpTo20(50):
   #what to do if it is divisible
else:
   #what to do if it isn't
#for the example of 50, it'll be false and jump to the else part, but you can put any number of variable in there

从功能上讲,它的工作方式与"all"基本相同,但是如果您不习惯花哨的语法和内置的语法,那么这个语法就更直观了。

*注意:我使用python 3,而不是python 2.7作为问题的标记。我很确定这个版本可以用,但如果不行,请有人纠正我。


我不知道回答你自己的问题是否好。

因为我需要检查。如果一个数能被1到20之间的数整除或不整除。所以检查要花很长时间。但是如果我能缩短检查表的长度,那么它将是有效的。

例如,如果一个数字可以被18除尽,那么它也应该可以被23除尽。因此,基于此,我制定了检查表:

1
2
3
if all(n % i == 0 for i in [7,11,13,16,17,18,19,20]):

    # some code

对于1412,应该这样想。

14:如果一个数字可被27除,它必须可被14除。

15:所以在15的情况下,如果一个数字可以被20除尽,那么它也可以被5除尽,如果一个数字可以被18除尽,那么它也可以被3除尽,如果一个数字可以被35除尽,那么它必须被15除尽。③

这比检查所有数字更有效,而且它还确保数字可以被1到20之间的所有数字整除。