Tensorflow running animations from jupyter/Ipython
我正在通过水上的水滴的tensorflow示例,代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | #Import libraries for simulation import tensorflow as tf import numpy as np #Imports for visualization import PIL.Image from io import BytesIO from IPython.display import clear_output, Image, display #A function for displaying the state of the pond's surface as an image. def DisplayArray(a, fmt='jpeg', rng=[0,1]): """Display an array as a picture.""" a = (a - rng[0])/float(rng[1] - rng[0])*255 a = np.uint8(np.clip(a, 0, 255)) f = BytesIO() PIL.Image.fromarray(a).save(f, fmt) clear_output(wait = True) display(Image(data=f.getvalue())) sess = tf.InteractiveSession() def make_kernel(a): """Transform a 2D array into a convolution kernel""" a = np.asarray(a) a = a.reshape(list(a.shape) + [1,1]) return tf.constant(a, dtype=1) def simple_conv(x, k): """A simplified 2D convolution operation""" x = tf.expand_dims(tf.expand_dims(x, 0), -1) y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME') return y[0, :, :, 0] def laplace(x): """Compute the 2D laplacian of an array""" laplace_k = make_kernel([[0.5, 1.0, 0.5], [1.0, -6., 1.0], [0.5, 1.0, 0.5]]) return simple_conv(x, laplace_k) N = 500 # Initial Conditions -- some rain drops hit a pond # Set everything to zero u_init = np.zeros([N, N], dtype=np.float32) ut_init = np.zeros([N, N], dtype=np.float32) # Some rain drops hit a pond at random points for n in range(40): a,b = np.random.randint(0, N, 2) u_init[a,b] = np.random.uniform() DisplayArray(u_init, rng=[-0.1, 0.1]) # Parameters: # eps -- time resolution # damping -- wave damping eps = tf.placeholder(tf.float32, shape=()) damping = tf.placeholder(tf.float32, shape=()) # Create variables for simulation state U = tf.Variable(u_init) Ut = tf.Variable(ut_init) # Discretized PDE update rules U_ = U + eps * Ut Ut_ = Ut + eps * (laplace(U) - damping * Ut) # Operation to update the state step = tf.group( U.assign(U_), Ut.assign(Ut_)) # Initialize state to initial conditions tf.global_variables_initializer().run() # Run 1000 steps of PDE for i in range(1000): # Step simulation step.run({eps: 0.03, damping: 0.04}) DisplayArray(U.eval(), rng=[-0.1, 0.1]) |
然后从Ipython I
任何使用过tensorflow的人都知道如何解决这个问题? 谷歌提到
你以前用过jupyter吗? 我认为你需要启动笔记本服务器并从那里运行代码。
尝试运行
我不熟悉你所指的例子,但我不认为这是一个TF问题。 了解如何通过jupyter运行它(iPython的新名称可以清除任何混淆)。
这让我快速了解如何使用jupyter和tensorflow来生成涟漪动画。