Store numpy.array in cells of a Pandas.DataFrame
我有一个要在其中存储"原始"
1 | df['COL_ARRAY'] = df.apply(lambda r: np.array(do_something_with_r), axis=1) |
但似乎
有解决方法吗? 除了使用包装器之外(请参见下面的编辑)?
我尝试
编辑
这行得通,但是我必须使用'dummy'
1 2 3 4 5 6 7 8 9 | class Data: def __init__(self, v): self.v = v meas = pd.read_excel(DATA_FILE) meas['DATA'] = meas.apply( lambda r: Data(np.array(pd.read_csv(r['filename'])))), axis=1 ) |
在numpy数组周围使用包装器,即将numpy数组作为列表传递
1 2 | a = np.array([5, 6, 7, 8]) df = pd.DataFrame({"a": [a]}) |
输出:
1 2 | a 0 [5, 6, 7, 8] |
或者您可以通过创建元组来使用
1 2 3 4 5 | df = pd.DataFrame({'id': [1, 2, 3, 4], 'a': ['on', 'on', 'off', 'off'], 'b': ['on', 'off', 'on', 'off']}) df['new'] = df.apply(lambda r: tuple(r), axis=1).apply(np.array) |
输出:
1 2 3 4 5 | a b id new 0 on on 1 [on, on, 1] 1 on off 2 [on, off, 2] 2 off on 3 [off, on, 3] 3 off off 4 [off, off, 4] |
1 | df['new'][0] |
输出:
1 | array(['on', 'on', '1'], dtype='<U2') |
您可以将数据框数据参数包装在方括号中,以在每个单元格中保持
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | one_d_array = np.array([1,2,3]) two_d_array = one_d_array*one_d_array[:,np.newaxis] two_d_array array([[1, 2, 3], [2, 4, 6], [3, 6, 9]]) pd.DataFrame([ [one_d_array], [two_d_array] ]) 0 0 [1, 2, 3] 1 [[1, 2, 3], [2, 4, 6], [3, 6, 9]] |
假设您有一个DataFrame
如果您首先将列设置为类型
1 2 3 4 | df = pd.DataFrame(columns=[1]) df[1] = df[1].astype(object) df.loc[1, 1] = np.array([5, 6, 7, 8]) df |
输出:
1 2 | 1 1 [5, 6, 7, 8] |
只需通过第一个
1 2 3 4 5 6 7 8 9 10 11 | import pandas as pd import numpy as np df = pd.DataFrame({'id': [1, 2, 3, 4], 'a': ['on', 'on', 'off', 'off'], 'b': ['on', 'off', 'on', 'off']}) df['new'] = df.apply(lambda x: [np.array(x)], axis=1).apply(lambda x: x[0]) df |
输出:
1 2 3 4 5 | id a b new 0 1 on on [1, on, on] 1 2 on off [2, on, off] 2 3 off on [3, off, on] 3 4 off off [4, off, off] |