关于java:“Serializable”类中的字段应该是瞬态的或可序列化的

Fields in a “Serializable” class should either be transient or serializable

嗨,我在声纳线头中看到这个错误:

"可序列化"类中的字段应该是临时的或可序列化

  • private final condition notEmpty=lock.newCondition();
  • private final condition notfull=lock.newCondition();
  • 专用比较器比较器;
  • 我的代码是:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    489
    490
    491
    492
    493
    494
    495
    496
    497
    498
    499
    500
    501
    502
    503
    504
    505
    506
    507
    508
    509
    510
    511
    512
    513
    514
    515
    516
    517
    518
    519
    520
    521
    522
    523
    524
    525
    526
    527
    528
    529
    530
    531
    532
    533
    534
    535
    536
    537
    538
    539
    540
    541
    542
    543
    544
    545
    546
    547
    548
    549
    550
    551
    552
    553
    554
    555
    556
    557
    558
    559
    560
    561
    562
    563
    564
    565
    566
    567
    568
    569
    570
    571
    572
    573
    574
    575
    576
    577
    578
    579
    580
    581
    582
    583
    584
    585
    586
    587
    588
    589
    590
    591
    592
    593
    594
    595
    596
    597
    598
    599
    600
    601
    602
    603
    604
    605
    606
    607
    608
    609
    610
    611
    612
    613
    614
    615
    616
    617
    618
    619
    620
    621
    622
    623
    624
    625
    626
    627
    628
    629
    630
    631
    632
    633
    634
    635
    636
    637
    638
    639
    640
    641
    642
    643
    644
    645
    646
    647
    648
    649
    650
    651
    652
    653
    654
    655
    656
    657
    658
    659
    660
    661
    662
    663
    664
    665
    666
    667
    668
    669
    670
    671
    672
    673
    674
    675
    676
    677
    678
    679
    680
    681
    682
    683
    684
    685
    686
    687
    688
    689
    690
    691
    692
    package com.cgi.atom.common.priorityexec;

    /**
     * Created by nageswararao.vesepog on 8/24/2016.
     */


    import java.util.*;
    import java.util.concurrent.BlockingDeque;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.Condition;
    import java.util.concurrent.locks.ReentrantLock;

    public class PriorityBlockingDeque<E>
            extends AbstractQueue<E>
            implements BlockingDeque<E>, java.io.Serializable {

        /*
         * Implemented as a navigable set protected by a
         * single lock and using conditions to manage blocking.
         */


        private final int capacity;

        private final LinkedList<E> list;
        /**
         * Main lock guarding all access
         */

        private final ReentrantLock lock = new ReentrantLock();
        /**
         * Condition for waiting takes
         */

        private final Condition  notEmpty = lock.newCondition();
        /**
         * Condition for waiting puts
         */

        private final Condition notFull = lock.newCondition();
        private  Comparator<E> comparator;

        /**
         * Creates a <tt>PriorityBlockingDeque</tt> with a capacity of
         * {@link Integer#MAX_VALUE}.
         */

        public PriorityBlockingDeque() {
            this(null, Integer.MAX_VALUE);
        }

        /**
         * Creates a <tt>PriorityBlockingDeque</tt> with the given (fixed) capacity.
         *
         * @param capacity the capacity of this deque
         * @throws IllegalArgumentException if <tt>capacity</tt> is less than 1
         */

        public PriorityBlockingDeque(int capacity) {
            this(null, capacity);
        }

        public PriorityBlockingDeque(Comparator<E> comparator, int capacity) {
            if (capacity <= 0) throw new IllegalArgumentException();
            this.capacity = capacity;
            this.list = new LinkedList<E>();
            this.comparator = comparator;
        }

        // Basic adding and removing operations, called only while holding lock

        /**
         * Adds e or returns false if full.
         *
         * @param e The element to add.
         * @return Whether adding was successful.
         */

        private boolean innerAdd(E e) {
            if (list.size() >= capacity)
                return false;

            int insertionPoint = Collections.binarySearch(list, e, comparator);
            if (insertionPoint < 0) {
                // this means the key didn't exist, so the insertion point is negative minus 1.
                insertionPoint = -insertionPoint - 1;
            }

            list.add(insertionPoint, e);
            notEmpty.signal();

            return true;
        }

        /**
         * Removes and returns first element, or null if empty.
         *
         * @return The removed element.
         */

        private E innerRemoveFirst() {
            E f = list.pollFirst();
            if (f == null)
                return null;


            notFull.signal();
            return f;
        }

        /**
         * Removes and returns last element, or null if empty.
         *
         * @return The removed element.
         */

        private E innerRemoveLast() {
            E l = list.pollLast();
            if (l == null)
                return null;

            notFull.signal();
            return l;
        }

        // BlockingDeque methods

        /**
         * @throws IllegalStateException {@inheritDoc}
         * @throws NullPointerException  {@inheritDoc}
         */

        public void addFirst(E e) {
            if (!offerFirst(e))
                throw new IllegalStateException("Deque full");
        }

        /**
         * @throws IllegalStateException {@inheritDoc}
         * @throws NullPointerException  {@inheritDoc}
         */

        public void addLast(E e) {
            if (!offerLast(e))
                throw new IllegalStateException("Deque full");
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         */

        public boolean offerFirst(E e) {
            if (e == null) throw new NullPointerException();
            lock.lock();
            try {
                return innerAdd(e);
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         */

        public boolean offerLast(E e) {
            if (e == null) throw new NullPointerException();
            lock.lock();
            try {
                return innerAdd(e);
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public void putFirst(E e) throws InterruptedException {
            if (e == null) throw new NullPointerException();
            lock.lock();
            try {
                while (!innerAdd(e))
                    notFull.await();
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public void putLast(E e) throws InterruptedException {
            if (e == null) throw new NullPointerException();
            lock.lock();
            try {
                while (!innerAdd(e))
                    notFull.await();
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public boolean offerFirst(E e, long timeout, TimeUnit unit)
                throws InterruptedException {
            if (e == null) throw new NullPointerException();
            long nanos = unit.toNanos(timeout);
            lock.lockInterruptibly();
            try {
                for (; ;) {
                    if (innerAdd(e))
                        return true;
                    if (nanos <= 0)
                        return false;
                    nanos = notFull.awaitNanos(nanos);
                }
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public boolean offerLast(E e, long timeout, TimeUnit unit)
                throws InterruptedException {
            if (e == null) throw new NullPointerException();
            long nanos = unit.toNanos(timeout);
            lock.lockInterruptibly();
            try {
                for (; ;) {
                    if (innerAdd(e))
                        return true;
                    if (nanos <= 0)
                        return false;
                    nanos = notFull.awaitNanos(nanos);
                }
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NoSuchElementException {@inheritDoc}
         */

        public E removeFirst() {
            E x = pollFirst();
            if (x == null) throw new NoSuchElementException();
            return x;
        }

        /**
         * @throws NoSuchElementException {@inheritDoc}
         */

        public E removeLast() {
            E x = pollLast();
            if (x == null) throw new NoSuchElementException();
            return x;
        }

        public E pollFirst() {
            lock.lock();
            try {
                return innerRemoveFirst();
            } finally {
                lock.unlock();
            }
        }

        public E pollLast() {
            lock.lock();
            try {
                return innerRemoveLast();
            } finally {
                lock.unlock();
            }
        }

        public E takeFirst() throws InterruptedException {
            lock.lock();
            try {
                E x;
                while ((x = innerRemoveFirst()) == null)
                    notEmpty.await();
                return x;
            } finally {
                lock.unlock();
            }
        }

        public E takeLast() throws InterruptedException {
            lock.lock();
            try {
                E x;
                while ((x = innerRemoveLast()) == null)
                    notEmpty.await();
                return x;
            } finally {
                lock.unlock();
            }
        }

        public E pollFirst(long timeout, TimeUnit unit)
                throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            lock.lockInterruptibly();
            try {
                for (; ;) {
                    E x = innerRemoveFirst();
                    if (x != null)
                        return x;
                    if (nanos <= 0)
                        return null;
                    nanos = notEmpty.awaitNanos(nanos);
                }
            } finally {
                lock.unlock();
            }
        }

        public E pollLast(long timeout, TimeUnit unit)
                throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            lock.lockInterruptibly();
            try {
                for (; ;) {
                    E x = innerRemoveLast();
                    if (x != null)
                        return x;
                    if (nanos <= 0)
                        return null;
                    nanos = notEmpty.awaitNanos(nanos);
                }
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws NoSuchElementException {@inheritDoc}
         */

        public E getFirst() {
            E x = peekFirst();
            if (x == null) throw new NoSuchElementException();
            return x;
        }

        /**
         * @throws NoSuchElementException {@inheritDoc}
         */

        public E getLast() {
            E x = peekLast();
            if (x == null) throw new NoSuchElementException();
            return x;
        }

        public E peekFirst() {
            lock.lock();
            try {
                return list.size() == 0 ? null : list.peekFirst();
            } finally {
                lock.unlock();
            }
        }

        public E peekLast() {
            lock.lock();
            try {
                return list.size() == 0 ? null : list.peekLast();
            } finally {
                lock.unlock();
            }
        }

        public boolean removeFirstOccurrence(Object o) {
            if (o == null) return false;
            lock.lock();
            try {
                for (Iterator<E> it = list.iterator(); it.hasNext();) {
                    E e = it.next();
                    if (o.equals(e)) {
                        it.remove();
                        return true;
                    }
                }
                return false;
            } finally {
                lock.unlock();
            }
        }

        public boolean removeLastOccurrence(Object o) {
            if (o == null) return false;
            lock.lock();
            try {
                for (Iterator<E> it = list.descendingIterator(); it.hasNext();) {
                    E e = it.next();
                    if (o.equals(e)) {
                        it.remove();
                        return true;
                    }
                }
                return false;
            } finally {
                lock.unlock();
            }
        }

        // BlockingQueue methods

        /**
         * Inserts the specified element to the deque unless it would
         * violate capacity restrictions.  When using a capacity-restricted deque,
         * it is generally preferable to use method {@link #offer(Object) offer}.
         * <p/>
         * <p>
    This method is equivalent to {@link #addLast}.
         *
         * @throws IllegalStateException if the element cannot be added at this
         *                               time due to capacity restrictions
         * @throws NullPointerException  if the specified element is null
         */

        @Override
        public boolean add(E e) {
            addLast(e);
            return true;
        }

        /**
         * @throws NullPointerException if the specified element is null
         */

        public boolean offer(E e) {
            return offerLast(e);
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public void put(E e) throws InterruptedException {
            putLast(e);
        }

        /**
         * @throws NullPointerException {@inheritDoc}
         * @throws InterruptedException {@inheritDoc}
         */

        public boolean offer(E e, long timeout, TimeUnit unit)
                throws InterruptedException {
            return offerLast(e, timeout, unit);
        }

        /**
         * Retrieves and removes the head of the queue represented by this deque.
         * This method differs from {@link #poll poll} only in that it throws an
         * exception if this deque is empty.
         * <p/>
         * <p>
    This method is equivalent to {@link #removeFirst() removeFirst}.
         *
         * @return the head of the queue represented by this deque
         * @throws NoSuchElementException if this deque is empty
         */

        @Override
        public E remove() {
            return removeFirst();
        }

        public E poll() {
            return pollFirst();
        }

        public E take() throws InterruptedException {
            return takeFirst();
        }

        public E poll(long timeout, TimeUnit unit) throws InterruptedException {
            return pollFirst(timeout, unit);
        }

        /**
         * Retrieves, but does not remove, the head of the queue represented by
         * this deque.  This method differs from {@link #peek peek} only in that
         * it throws an exception if this deque is empty.
         * <p/>
         * <p>
    This method is equivalent to {@link #getFirst() getFirst}.
         *
         * @return the head of the queue represented by this deque
         * @throws NoSuchElementException if this deque is empty
         */

        @Override
        public E element() {
            return getFirst();
        }

        public E peek() {
            return peekFirst();
        }

        /**
         * Returns the number of additional elements that this deque can ideally
         * (in the absence of memory or resource constraints) accept without
         * blocking. This is always equal to the initial capacity of this deque
         * less the current <tt>size</tt> of this deque.
         * <p/>
         * <p>
    Note that you cannot always tell if an attempt to insert
         * an element will succeed by inspecting <tt>remainingCapacity</tt>
         * because it may be the case that another thread is about to
         * insert or remove an element.
         */

        public int remainingCapacity() {
            lock.lock();
            try {
                return capacity - list.size();
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */

        public int drainTo(Collection<? super E> c) {
            if (c==null)
                throw new NullPointerException();
            if (c.equals(this))
                throw new IllegalArgumentException();
            lock.lock();
            try {
                for (E e : list) {
                    c.add(e);
                }
                int n = list.size();
                list.clear();
                notFull.signalAll();
                return n;
            } finally {
                lock.unlock();
            }
        }

        /**
         * @throws UnsupportedOperationException {@inheritDoc}
         * @throws ClassCastException            {@inheritDoc}
         * @throws NullPointerException          {@inheritDoc}
         * @throws IllegalArgumentException      {@inheritDoc}
         */

        public int drainTo(Collection<? super E> c, int maxElements) {
            if (c ==null)
                throw new NullPointerException();
            if (c.equals(this))
                throw new IllegalArgumentException();
            lock.lock();
            try {
                int n = 0;
                for (Iterator<E> it = list.iterator(); n < maxElements && it.hasNext();) {
                    E e = it.next();
                    c.add(e);
                    it.remove();
                    ++n;
                }

                notFull.signalAll();
                return n;
            } finally {
                lock.unlock();
            }
        }

        // Stack methods

        /**
         * @throws IllegalStateException {@inheritDoc}
         * @throws NullPointerException  {@inheritDoc}
         */

        public void push(E e) {
            addFirst(e);
        }

        /**
         * @throws NoSuchElementException {@inheritDoc}
         */

        public E pop() {
            return removeFirst();
        }

        // Collection methods

        /**
         * Removes the first occurrence of the specified element from this deque.
         * If the deque does not contain the element, it is unchanged.
         * More formally, removes the first element <tt>e</tt> such that
         * <tt>o.equals(e)</tt> (if such an element exists).
         * Returns <tt>true</tt> if this deque contained the specified element
         * (or equivalently, if this deque changed as a result of the call).
         * <p/>
         * <p>
    This method is equivalent to
         * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
         *
         * @param o element to be removed from this deque, if present
         * @return <tt>true</tt> if this deque changed as a result of the call
         */

        @Override
        public boolean remove(Object o) {
            return removeFirstOccurrence(o);
        }

        /**
         * Returns the number of elements in this deque.
         *
         * @return the number of elements in this deque
         */

        @Override
        public int size() {
            lock.lock();
            try {
                return list.size();
            } finally {
                lock.unlock();
            }
        }

        /**
         * Returns <tt>true</tt> if this deque contains the specified element.
         * More formally, returns <tt>true</tt> if and only if this deque contains
         * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
         *
         * @param o object to be checked for containment in this deque
         * @return <tt>true</tt> if this deque contains the specified element
         */

        @Override
        public boolean contains(Object o) {
            if (o == null) return false;
            lock.lock();
            try {
                return list.contains(o);
            } finally {
                lock.unlock();
            }
        }

        /**
         * Returns an array containing all of the elements in this deque, in
         * proper sequence (from first to last element).
         * <p/>
         * <p>
    The returned array will be"safe" in that no references to it are
         * maintained by this deque.  (In other words, this method must allocate
         * a new array).  The caller is thus free to modify the returned array.
         * <p/>
         * <p>
    This method acts as bridge between array-based and collection-based
         * APIs.
         *
         * @return an array containing all of the elements in this deque
         */

        @Override
        public Object[] toArray() {
            lock.lock();
            try {
                return list.toArray();
            } finally {
                lock.unlock();
            }
        }

        /**
         * Returns an array containing all of the elements in this deque, in
         * proper sequence; the runtime type of the returned array is that of
         * the specified array.  If the deque fits in the specified array, it
         * is returned therein.  Otherwise, a new array is allocated with the
         * runtime type of the specified array and the size of this deque.
         * <p/>
         * <p>
    If this deque fits in the specified array with room to spare
         * (i.e., the array has more elements than this deque), the element in
         * the array immediately following the end of the deque is set to
         * <tt>null</tt>.
         * <p/>
         * <p>
    Like the {@link #toArray()} method, this method acts as bridge between
         * array-based and collection-based APIs.  Further, this method allows
         * precise control over the runtime type of the output array, and may,
         * under certain circumstances, be used to save allocation costs.
         * <p/>
         * <p>
    Suppose <tt>x</tt> is a deque known to contain only strings.
         * The following code can be used to dump the deque into a newly
         * allocated array of <tt>String</tt>:
         * <p/>
         * [cc lang="java"]
         *     String[] y = x.toArray(new String[0]);

    *P/>*注意,toarray(new object[0])在函数to中是相同的*toarray().。**@参数a deque元素要放入的数组*如果足够大,则存储;否则,将*为此目的分配了相同的运行时类型*@返回包含此deque中所有元素的数组*@如果指定数组的运行时类型为*不是中每个元素的运行时类型的父类型*这个德克*@如果指定的数组为空,则引发NullPointerException*/@覆盖公共t[]ToArray(t[]a){lock.lock();尝试{返回清单。ToArray(a);}最后{lock.unlock();}}@覆盖公共字符串ToString()。{lock.lock();尝试{返回super.toString();}最后{lock.unlock();}}/***原子性地从这个deque中删除所有元素。*此调用返回后,deque将为空。*/@覆盖public void clear()。{lock.lock();尝试{list.clear();notfull.signalAll();}最后{lock.unlock();}}@覆盖公共迭代器迭代器()。{返回list.iterator();}public迭代器DescendingIterator()。{返回list.DescendingIterator();}}

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    <P>能否有人提供解决方案,这样声纳就不会显示所有三个变量的这些误差?</P><div class="suo-content">[collapse title=""]<ul><li>"serializable"类中的sonarlint v3:fields的可能重复项对于列表接口应该是瞬态的或可序列化的</li></ul>[/collapse]</div><p><center>[wp_ad_camp_1]</center></p><hr><P>声纳已经给了你两个解决方案。</P><li>使它们可序列化</li><li>使它们暂时</li><P>你不能做前者,因为它们不是你写的课程,所以你需要让它们暂时消失。在Java中关键字"瞬变"是什么意思?</P><P>或者,如果您不需要序列化任何<wyn>PriorityBlockingDeque</wyn>,那么只需删除该接口。</P><P>这是一个警告的原因是,应该如何序列化包含不可序列化组件的类?</P><div class="suo-content">[collapse title=""]<ul><li>为什么我不能选择选项1?你能解释更多吗</li><li>@用户3766619当然。因为<wyn>Condition</wyn>是一个接口,您不是它的作者。它是JDK的一部分。你不能改变它。</li></ul>[/collapse]</div><hr><P>可序列化类中的字段本身必须是可序列化的或瞬时的,即使该类从未显式序列化或反序列化。例如,在负载下,大多数J2EE应用程序框架将对象刷新到磁盘上,而一个据称具有非瞬时、不可序列化数据成员的可序列化对象可能导致程序崩溃,并为攻击者打开大门。通常,可序列化类应该满足其约定,并且在序列化实例时不具有意外行为。</P><P>此规则在不可序列化字段上以及在集合字段不是私有字段(因为它们可以从外部分配不可序列化的值)以及在类中分配不可序列化的类型时引发问题。</P><P>不符合代码示例</P>[cc lang="java"]public class Address {
      //...
    }

    public class Person implements Serializable {
     private static final long serialVersionUID = 1905122041950251207L;

     private String name;
     private Address address;  // Noncompliant; Address isn't serializable
    }

    例外

    使所有成员都可序列化或瞬态的替代方法是实现特殊方法,这些方法负责正确序列化和反序列化对象。此规则忽略实现以下方法的类:

    1
    2
    3
    4
     private void writeObject(java.io.ObjectOutputStream out)
         throws IOException
     private void readObject(java.io.ObjectInputStream in)
         throws IOException, ClassNotFoundException;

    引用:"serializable"类中的字段应该是瞬态的或可序列化的(squid:s1948)