Error indicates flattened dimensions when loading pre-trained network
问题
我正在尝试加载预训练网络,但出现以下错误
F1101 23:03:41.857909 73 net.cpp:757] Cannot copy param 0 weights
from layer 'fc4'; shape mismatch. Source param shape is 512 4096
(2097152); target param shape is 512 256 4 4 (2097152). To learn this
layer's parameters from scratch rather than copying from a saved net,
rename the layer.
我注意到 512 x 256 x 4 x 4 == 512 x 4096,所以似乎在保存和重新加载网络权重时,图层以某种方式变平了。
如何解决这个错误?
重现
我正在尝试在这个 GitHub 存储库中使用 D-CNN 预训练网络。
我用
加载网络
1 2 | import caffe net = caffe.Net('deploy_D-CNN.prototxt', 'D-CNN.caffemodel', caffe.TEST) |
prototxt 文件是
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | name:"D-CNN" input:"data" input_dim: 10 input_dim: 3 input_dim: 259 input_dim: 259 layer { name:"conv1" type:"Convolution" bottom:"data" top:"conv1" convolution_param { num_output: 64 kernel_size: 5 stride: 2 } } layer { name:"relu1" type:"ReLU" bottom:"conv1" top:"conv1" } layer { name:"pool1" type:"Pooling" bottom:"conv1" top:"pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name:"norm1" type:"LRN" bottom:"pool1" top:"norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name:"conv2" type:"Convolution" bottom:"norm1" top:"conv2" convolution_param { num_output: 128 pad: 1 kernel_size: 3 } } layer { name:"relu2" type:"ReLU" bottom:"conv2" top:"conv2" } layer { name:"pool2" type:"Pooling" bottom:"conv2" top:"pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name:"conv3" type:"Convolution" bottom:"pool2" top:"conv3" convolution_param { num_output: 256 pad: 1 kernel_size: 3 stride: 1 } } layer { name:"relu3" type:"ReLU" bottom:"conv3" top:"conv3" } layer { name:"fc4" type:"Convolution" bottom:"conv3" top:"fc4" convolution_param { num_output: 512 pad: 0 kernel_size: 4 } } layer { name:"relu4" type:"ReLU" bottom:"fc4" top:"fc4" } layer { name:"drop4" type:"Dropout" bottom:"fc4" top:"fc4" dropout_param { dropout_ratio: 0.5 } } layer { name:"pool5_spm3" type:"Pooling" bottom:"fc4" top:"pool5_spm3" pooling_param { pool: MAX kernel_size: 10 stride: 10 } } layer { name:"pool5_spm3_flatten" type:"Flatten" bottom:"pool5_spm3" top:"pool5_spm3_flatten" } layer { name:"pool5_spm2" type:"Pooling" bottom:"fc4" top:"pool5_spm2" pooling_param { pool: MAX kernel_size: 14 stride: 14 } } layer { name:"pool5_spm2_flatten" type:"Flatten" bottom:"pool5_spm2" top:"pool5_spm2_flatten" } layer { name:"pool5_spm1" type:"Pooling" bottom:"fc4" top:"pool5_spm1" pooling_param { pool: MAX kernel_size: 29 stride: 29 } } layer { name:"pool5_spm1_flatten" type:"Flatten" bottom:"pool5_spm1" top:"pool5_spm1_flatten" } layer { name:"pool5_spm" type:"Concat" bottom:"pool5_spm1_flatten" bottom:"pool5_spm2_flatten" bottom:"pool5_spm3_flatten" top:"pool5_spm" concat_param { concat_dim: 1 } } layer { name:"fc4_2" type:"InnerProduct" bottom:"pool5_spm" top:"fc4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 512 weight_filler { type:"gaussian" std: 0.005 } bias_filler { type:"constant" value: 0.1 } } } layer { name:"relu4" type:"ReLU" bottom:"fc4_2" top:"fc4_2" } layer { name:"drop4" type:"Dropout" bottom:"fc4_2" top:"fc4_2" dropout_param { dropout_ratio: 0.5 } } layer { name:"fc5" type:"InnerProduct" bottom:"fc4_2" top:"fc5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 19 weight_filler { type:"gaussian" std: 0.01 } bias_filler { type:"constant" value: 0 } } } layer { name:"prob" type:"Softmax" bottom:"fc5" top:"prob" } |
看起来你正在使用一个预训练的网络,其中层
由于内积层和卷积层都对输入执行大致相同的线性运算,因此可以在某些假设下进行此更改(例如,参见此处)。
正如您已经正确识别的那样,原始预训练的全连接层的权重被保存为"扁平化"w.r.t caffe 期望卷积层的形状。
我认为可以使用
来解决这个问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | layer { name:"fc4" type:"Convolution" bottom:"conv3" top:"fc4" convolution_param { num_output: 512 pad: 0 kernel_size: 4 } param { lr_mult: 1 decay_mult: 1 share_mode: PERMISSIVE # should help caffe overcome the shape mismatch } param { lr_mult: 2 decay_mult: 0 share_mode: PERMISSIVE } } |