tf.data.Dataset from tf.keras.preprocessing.image.ImageDataGenerator.flow_from_directory?
如何从
我正在考虑
A
DirectoryIterator yielding tuples of(x, y) wherex is a numpy array containing a batch of images with shape(batch_size, *target_size, channels) andy is a numpy array of corresponding labels.
在tf.data API中如何使用Keras生成器已经讨论了类似的问题。让我从那里复制粘贴答案:
1 2 3 4 5 6 7 | def make_generator(): train_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory(train_dataset_folder,target_size=(224, 224), class_mode='categorical', batch_size=32) return train_generator train_dataset = tf.data.Dataset.from_generator(make_generator,(tf.float32, tf.float32)) |
作者在图范围方面面临另一个问题,但我想它与您的问题无关。
或作为一个衬纸:
1 2 | tf.data.Dataset.from_generator(lambda: ImageDataGenerator().flow_from_directory('folder_path'),(tf.float32, tf.float32)) |