关于机器学习:最小化 tensorflow.js 中前馈神经网络的损失

minimizing loss in tensorflow.js for feed forward neural network

我正在尝试在 tensorflow.js 中创建一个示例前馈神经网络,最初使用一个小数据集(仅用于 POC)。有 5 个输入节点和 1 个输出节点。数据与有多个输入的住房相关,我们正在预测价格。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
x_train:
[ [ 79545.45857, 5.682861322, 7.009188143, 4.09, 23086.8005 ],
  [ 79248.64245, 6.002899808, 6.730821019, 3.09, 40173.07217 ],
  [ 61287.06718, 5.86588984, 8.51272743, 5.13, 36882.1594 ],
  [ 63345.24005, 7.188236095, 5.586728665, 3.26, 34310.24283 ],
  [ 59982.19723, 5.040554523, 7.839387785, 4.23, 26354.10947 ],
...
]

y_train
[ [ 1059033.558 ],
  [ 1505890.915 ],
  [ 1058987.988 ],
  [ 1260616.807 ],
  [ 630943.4893 ],
...
]

const model = tf.sequential();
const config_hidden = {
        inputShape: [5],
        activation: 'sigmoid',
        units: 6
    }

const config_output = {
    units: 1,
    activation: 'sigmoid'
}

const hidden = tf.layers.dense(config_hidden);
const output = tf.layers.dense(config_output);

model.add(hidden);
model.add(output);

const optimizer = tf.train.sgd(0.5);

const config = {
    optimizer: optimizer,
    loss: 'meanSquaredError',
    metrics: ['accuracy']
}

model.compile(config);

train_data().then(function () {
    console.log('Training is Complete');
}

async function train_data() {
    const options = {
        shuffle: true,
        epochs: 10,
        batch_size: 100,
        validationSplit: 0.1
    }

    for (let i = 0; i < 10; i++) {
        const res = await model.fit(xs, ys, options);
        console.log(res.history.loss[0]);
    }
}

模型编译良好。但是训练模型时的损失是巨大的

1
2
3
4
5
6
7
8
9
10
11
12
13
Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
1058ms 235us/step - acc=0.00 loss=1648912629760.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 2 / 10
eta=0.0 ====================================================================>
700ms 156us/step - acc=0.00 loss=1648913285120.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 3 / 10
eta=0.0 ====================================================================>
615ms 137us/step - acc=0.00 loss=1648913022976.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 4 / 10
eta=0.0 ====================================================================>
852ms 189us/step - acc=0.00 loss=1648913285120.00 val_acc=0.00 val_loss=1586459705344.00

我认为这可能是因为训练数据未标准化。所以我取数据的平均值并对其进行划分

1
2
3
4
5
6
7
xs = xs.div(xs.mean(0));

x_train
[[1.1598413, 0.9507535, 1.003062 , 1.0272969, 0.6384002],
     [1.1555134, 1.0042965, 0.9632258, 0.7761241, 1.1108726],
     [0.8936182, 0.9813745, 1.2182286, 1.2885166, 1.0198718],
     ...,

损失变化不大

1
2
3
4
5
6
7
8
9
10
Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
841ms 187us/step - acc=0.00 loss=1648912760832.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 2 / 10
eta=0.0 ====================================================================>
613ms 136us/step - acc=0.00 loss=1648913154048.00 val_acc=0.00 val_loss=1586459705344.00
Epoch 3 / 10
eta=0.0 ====================================================================>
646ms 144us/step - acc=0.00 loss=1648913022976.00 val_acc=0.00 val_loss=1586459705344.00

然后我也将输出标准化,

1
2
3
4
5
6
7
8
9
10
11
12
ys = ys.div(1000000);

Model Successfully Compiled
Epoch 1 / 10
eta=0.0 ====================================================================>
899ms 200us/step - acc=0.00 loss=0.202 val_acc=0.00 val_loss=0.161
Epoch 2 / 10
eta=0.0 ====================================================================>
667ms 148us/step - acc=0.00 loss=0.183 val_acc=0.00 val_loss=0.160
Epoch 3 / 10
eta=0.0 ====================================================================>
609ms 135us/step - acc=0.00 loss=0.182 val_acc=0.00 val_loss=0.159

这将损失降至十进制数字。然而可以看出,即使在训练数据上运行 10000 次迭代也不会显着减少损失。例如

1
2
3
4
5
6
7
8
9
10
Epoch 8 / 10
eta=0.0 ====================================================================>
502ms 112us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
Epoch 9 / 10
eta=0.0 ====================================================================>
551ms 122us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
Epoch 10 / 10
eta=0.0 ====================================================================>
470ms 104us/step - acc=0.00 loss=0.181 val_acc=0.00 val_loss=0.158
0.18076679110527039

最终损失从 0.202 左右开始下降到 0.180 左右。这会导致错误的预测。

这是一种非常常见的情况。具有不同范围值的多个输入(例如,上面使用的住房数据)。多个输入传递给前馈神经网络。预计只有一个输出(在这种情况下为价格)。

问题:
1.我在上面的代码中做错了什么?
2. 我是否以正确的方式规范化数据?
3. 我是否使用了正确的损失函数/优化器/学习率/激活等?
4.我如何知道模型是否表现良好
5. tensorflow.js 中有没有其他方法可以做到这一点?


我将假设您没有尝试线性回归,因为 Sigmoidal 激活。如果您正在尝试线性回归,请删除所有地方的 sigmoidal 激活。将尝试解决我能看到的所有错误:

  • 从输出中删除 sigmoid 激活。 sigmoid 函数将输入压缩到 0 到 1 之间,因此它不用于回归。您的最后一层不需要激活。

  • 你的学习率太高了,所以我怀疑学习算法能否收敛。从大约 0.001 - 0.01 等值开始,并根据需要进行调整。

  • 不,你没有正确规范化。通常,数据被归一化为均值为零和标准差为 1。这是针对每个特征列完成的,仅使用该列的平均值和标准差,而不是所有数据。例如特征列x中的i的公式如下:(x_i - x.mean()) / x.std()。 (我不懂 javascript)

  • 您提供的性能指标"准确度"用于分类,而不是回归,并且毫无意义(如果提供的话)。最小化均方误差或绝对平方误差是量化模型性能的最佳方法。