How to (smartly) loop over all points in a GeoDataframe and look at nearest neighbours
我有一个大 (O(10^6) 行) 数据集(带有值的点),我需要对所有点执行以下操作:
- 在预定义的半径内找到最近的 3 个点。
- 计算这三个点的关联值的平均值。
- 将平均值保存到我正在查看的点
"非矢量化"方法是简单地遍历所有点...对于所有点,然后应用逻辑。然而,这扩展性很差。
我已经包含了一个玩具示例,它可以满足我的需求。我已经考虑过的想法是:
- 使用 shapely.ops.nearest_points: 然而,这似乎只返回一个最近的点。
- 围绕每个单独的点进行缓冲并与原始 GeoDataframe 进行连接:这似乎比天真的方法更糟糕。
这是我要实现的逻辑的玩具示例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import pandas as pd import numpy as np from shapely.wkt import loads import geopandas as gp points=[ 'POINT (1 1.1)', 'POINT (1 1.9)', 'POINT (1 3.1)', 'POINT (2 1)', 'POINT (2 2.1)', 'POINT (2 2.9)', 'POINT (3 0.8)', 'POINT (3 2)', 'POINT (3 3)' ] values=[9,8,7,6,5,4,3,2,1] df=pd.DataFrame({'points':points,'values':values}) gdf=gp.GeoDataFrame(df,geometry=[loads(x) for x in df.points], crs={'init': 'epsg:' + str(25832)}) for index,row in gdf.iterrows(): # Looping over all points gdf['dist'] = np.nan for index2,row2 in gdf.iterrows(): # Looping over all the other points if index==index2: continue d=row['geometry'].distance(row2['geometry']) # Calculate distance if d<3: gdf.at[index2,'dist']=d # If within cutoff: Store else: gdf.at[index2,'dist']=np.nan # Otherwise, be paranoid and leave NAN # Calculating mean of values for the 3 nearest points and storing gdf.at[index,'mean']=np.mean(gdf.sort_values('dist').head(3)['values'].tolist()) print(gdf) |
生成的 GeoDataframe 在这里:
1 2 3 4 5 6 7 8 9 10 | points values geometry dist mean 0 POINT (1 1.1) 9 POINT (1 1.1) 2.758623 6.333333 1 POINT (1 1.9) 8 POINT (1 1.9) 2.282542 7.000000 2 POINT (1 3.1) 7 POINT (1 3.1) 2.002498 5.666667 3 POINT (2 1) 6 POINT (2 1) 2.236068 5.666667 4 POINT (2 2.1) 5 POINT (2 2.1) 1.345362 4.666667 5 POINT (2 2.9) 4 POINT (2 2.9) 1.004988 4.333333 6 POINT (3 0.8) 3 POINT (3 0.8) 2.200000 4.333333 7 POINT (3 2) 2 POINT (3 2) 1.000000 3.000000 8 POINT (3 3) 1 POINT (3 3) NaN 3.666667 |
你可以看到最后一次迭代的状态。
- 除了在 NAN 留下的最终位置之外,所有距离都已计算。
- 最后一次迭代的平均值是三个最近点的平均值:2、4和5,即3,666667。
如何以更具可扩展性的方式做到这一点?
我会为此使用空间索引。您可以使用
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import pandas as pd import numpy as np from shapely.wkt import loads import geopandas as gp import libpysal points=[ 'POINT (1 1.1)', 'POINT (1 1.9)', 'POINT (1 3.1)', 'POINT (2 1)', 'POINT (2 2.1)', 'POINT (2 2.9)', 'POINT (3 0.8)', 'POINT (3 2)', 'POINT (3 3)' ] values=[9,8,7,6,5,4,3,2,1] df=pd.DataFrame({'points':points,'values':values}) gdf=gp.GeoDataFrame(df,geometry=[loads(x) for x in df.points], crs={'init': 'epsg:' + str(25832)}) knn3 = libpysal.weights.KNN.from_dataframe(gdf, k=3) means = [] for index, row in gdf.iterrows(): # Looping over all points knn_neighbors = knn3.neighbors[index] knnsubset = gdf.iloc[knn_neighbors] neighbors = [] for ix, r in knnsubset.iterrows(): if r.geometry.distance(row.geometry) < 3: # max distance here neighbors.append(ix) subset = gdf.iloc[list(neighbors)] means.append(np.mean(subset['values'])) gdf['mean'] = means |
这是结果:
1 2 3 4 5 6 7 8 9 10 | points values geometry mean 0 POINT (1 1.1) 9 POINT (1 1.1) 6.333333 1 POINT (1 1.9) 8 POINT (1 1.9) 7.000000 2 POINT (1 3.1) 7 POINT (1 3.1) 5.666667 3 POINT (2 1) 6 POINT (2 1) 5.666667 4 POINT (2 2.1) 5 POINT (2 2.1) 4.666667 5 POINT (2 2.9) 4 POINT (2 2.9) 4.333333 6 POINT (3 0.8) 3 POINT (3 0.8) 4.333333 7 POINT (3 2) 2 POINT (3 2) 3.000000 8 POINT (3 3) 1 POINT (3 3) 3.666667 |