How to determine CPU and memory consumption from inside a process?
我曾经有过从正在运行的应用程序中确定以下性能参数的任务:
- 可用的虚拟内存总量
- 目前使用的虚拟内存
- 我的进程当前使用的虚拟内存
- 总RAM可用
- RAM目前使用
- RAM当前由我的进程使用
- 目前使用的CPU%
- 我的进程当前使用的CPU百分比
代码必须在Windows和Linux上运行。尽管这似乎是一项标准任务,但在手册(WIN32 API,GNU文档)以及Internet上查找必要的信息花了我好几天,因为关于这个主题的信息太多不完整/不正确/过时了发现了那里。
为了避免其他人遇到同样的麻烦,我认为收集所有分散的信息加上我在一个地方通过反复试验找到的信息是个好主意。
视窗
上面的一些值可以从相应的WIN32 API轻松获得,我只是在这里列出它们的完整性。然而,其他人需要从性能数据助手库(PDH)获得,这有点"不直观"并且需要花费大量痛苦的试验和错误才能开始工作。 (至少它花了我一段时间,也许我只是有点愚蠢......)
注意:为清楚起见,以下代码中省略了所有错误检查。检查返回代码......!
-
虚拟内存总量:
1
2
3
4
5
6#include"windows.h"
MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(MEMORYSTATUSEX);
GlobalMemoryStatusEx(&memInfo);
DWORDLONG totalVirtualMem = memInfo.ullTotalPageFile;注意:名称"TotalPageFile"在这里有点误导。实际上,此参数提供"虚拟内存大小",即交换文件的大小加上已安装的RAM。
-
目前使用的虚拟内存:
与"Total Virtual Memory"中的代码相同,然后
1DWORDLONG virtualMemUsed = memInfo.ullTotalPageFile - memInfo.ullAvailPageFile; -
当前进程当前使用的虚拟内存:
1
2
3
4
5
6#include"windows.h"
#include"psapi.h"
PROCESS_MEMORY_COUNTERS_EX pmc;
GetProcessMemoryInfo(GetCurrentProcess(), &pmc, sizeof(pmc));
SIZE_T virtualMemUsedByMe = pmc.PrivateUsage;
-
总物理内存(RAM):
与"Total Virtual Memory"中的代码相同,然后
1DWORDLONG totalPhysMem = memInfo.ullTotalPhys; -
目前使用的物理内存:
1
2
3Same code as in"Total Virtual Memory" and then
DWORDLONG physMemUsed = memInfo.ullTotalPhys - memInfo.ullAvailPhys; -
当前进程当前使用的物理内存:
与"当前进程当前使用的虚拟内存"中的代码相同
1SIZE_T physMemUsedByMe = pmc.WorkingSetSize;
-
目前使用的CPU:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include"TCHAR.h"
#include"pdh.h"
static PDH_HQUERY cpuQuery;
static PDH_HCOUNTER cpuTotal;
void init(){
PdhOpenQuery(NULL, NULL, &cpuQuery);
// You can also use L"\\Processor(*)\\% Processor Time" and get individual CPU values with PdhGetFormattedCounterArray()
PdhAddEnglishCounter(cpuQuery, L"\\Processor(_Total)\\% Processor Time", NULL, &cpuTotal);
PdhCollectQueryData(cpuQuery);
}
double getCurrentValue(){
PDH_FMT_COUNTERVALUE counterVal;
PdhCollectQueryData(cpuQuery);
PdhGetFormattedCounterValue(cpuTotal, PDH_FMT_DOUBLE, NULL, &counterVal);
return counterVal.doubleValue;
} -
当前进程当前使用的CPU:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43#include"windows.h"
static ULARGE_INTEGER lastCPU, lastSysCPU, lastUserCPU;
static int numProcessors;
static HANDLE self;
void init(){
SYSTEM_INFO sysInfo;
FILETIME ftime, fsys, fuser;
GetSystemInfo(&sysInfo);
numProcessors = sysInfo.dwNumberOfProcessors;
GetSystemTimeAsFileTime(&ftime);
memcpy(&lastCPU, &ftime, sizeof(FILETIME));
self = GetCurrentProcess();
GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
memcpy(&lastSysCPU, &fsys, sizeof(FILETIME));
memcpy(&lastUserCPU, &fuser, sizeof(FILETIME));
}
double getCurrentValue(){
FILETIME ftime, fsys, fuser;
ULARGE_INTEGER now, sys, user;
double percent;
GetSystemTimeAsFileTime(&ftime);
memcpy(&now, &ftime, sizeof(FILETIME));
GetProcessTimes(self, &ftime, &ftime, &fsys, &fuser);
memcpy(&sys, &fsys, sizeof(FILETIME));
memcpy(&user, &fuser, sizeof(FILETIME));
percent = (sys.QuadPart - lastSysCPU.QuadPart) +
(user.QuadPart - lastUserCPU.QuadPart);
percent /= (now.QuadPart - lastCPU.QuadPart);
percent /= numProcessors;
lastCPU = now;
lastUserCPU = user;
lastSysCPU = sys;
return percent * 100;
}
Linux的
在Linux上,最初看起来很明显的选择是使用像
最后,我通过读取伪文件系统
-
虚拟内存总量:
1
2
3
4
5
6
7
8
9
10#include"sys/types.h"
#include"sys/sysinfo.h"
struct sysinfo memInfo;
sysinfo (&memInfo);
long long totalVirtualMem = memInfo.totalram;
//Add other values in next statement to avoid int overflow on right hand side...
totalVirtualMem += memInfo.totalswap;
totalVirtualMem *= memInfo.mem_unit; -
目前使用的虚拟内存:
与"Total Virtual Memory"中的代码相同,然后
1
2
3
4long long virtualMemUsed = memInfo.totalram - memInfo.freeram;
//Add other values in next statement to avoid int overflow on right hand side...
virtualMemUsed += memInfo.totalswap - memInfo.freeswap;
virtualMemUsed *= memInfo.mem_unit; -
当前进程当前使用的虚拟内存:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#include"stdlib.h"
#include"stdio.h"
#include"string.h"
int parseLine(char* line){
// This assumes that a digit will be found and the line ends in" Kb".
int i = strlen(line);
const char* p = line;
while (*p <'0' || *p > '9') p++;
line[i-3] = '\0';
i = atoi(p);
return i;
}
int getValue(){ //Note: this value is in KB!
FILE* file = fopen("/proc/self/status","r");
int result = -1;
char line[128];
while (fgets(line, 128, file) != NULL){
if (strncmp(line,"VmSize:", 7) == 0){
result = parseLine(line);
break;
}
}
fclose(file);
return result;
}
-
总物理内存(RAM):
与"Total Virtual Memory"中的代码相同,然后
1
2
3long long totalPhysMem = memInfo.totalram;
//Multiply in next statement to avoid int overflow on right hand side...
totalPhysMem *= memInfo.mem_unit; -
目前使用的物理内存:
与"Total Virtual Memory"中的代码相同,然后
1
2
3long long physMemUsed = memInfo.totalram - memInfo.freeram;
//Multiply in next statement to avoid int overflow on right hand side...
physMemUsed *= memInfo.mem_unit; -
当前进程当前使用的物理内存:
在"当前进程当前使用的虚拟内存"中更改getValue(),如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14int getValue(){ //Note: this value is in KB!
FILE* file = fopen("/proc/self/status","r");
int result = -1;
char line[128];
while (fgets(line, 128, file) != NULL){
if (strncmp(line,"VmRSS:", 6) == 0){
result = parseLine(line);
break;
}
}
fclose(file);
return result;
}
-
目前使用的CPU:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44#include"stdlib.h"
#include"stdio.h"
#include"string.h"
static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
void init(){
FILE* file = fopen("/proc/stat","r");
fscanf(file,"cpu %llu %llu %llu %llu", &lastTotalUser, &lastTotalUserLow,
&lastTotalSys, &lastTotalIdle);
fclose(file);
}
double getCurrentValue(){
double percent;
FILE* file;
unsigned long long totalUser, totalUserLow, totalSys, totalIdle, total;
file = fopen("/proc/stat","r");
fscanf(file,"cpu %llu %llu %llu %llu", &totalUser, &totalUserLow,
&totalSys, &totalIdle);
fclose(file);
if (totalUser < lastTotalUser || totalUserLow < lastTotalUserLow ||
totalSys < lastTotalSys || totalIdle < lastTotalIdle){
//Overflow detection. Just skip this value.
percent = -1.0;
}
else{
total = (totalUser - lastTotalUser) + (totalUserLow - lastTotalUserLow) +
(totalSys - lastTotalSys);
percent = total;
total += (totalIdle - lastTotalIdle);
percent /= total;
percent *= 100;
}
lastTotalUser = totalUser;
lastTotalUserLow = totalUserLow;
lastTotalSys = totalSys;
lastTotalIdle = totalIdle;
return percent;
} -
当前进程当前使用的CPU:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50#include"stdlib.h"
#include"stdio.h"
#include"string.h"
#include"sys/times.h"
#include"sys/vtimes.h"
static clock_t lastCPU, lastSysCPU, lastUserCPU;
static int numProcessors;
void init(){
FILE* file;
struct tms timeSample;
char line[128];
lastCPU = times(&timeSample);
lastSysCPU = timeSample.tms_stime;
lastUserCPU = timeSample.tms_utime;
file = fopen("/proc/cpuinfo","r");
numProcessors = 0;
while(fgets(line, 128, file) != NULL){
if (strncmp(line,"processor", 9) == 0) numProcessors++;
}
fclose(file);
}
double getCurrentValue(){
struct tms timeSample;
clock_t now;
double percent;
now = times(&timeSample);
if (now <= lastCPU || timeSample.tms_stime < lastSysCPU ||
timeSample.tms_utime < lastUserCPU){
//Overflow detection. Just skip this value.
percent = -1.0;
}
else{
percent = (timeSample.tms_stime - lastSysCPU) +
(timeSample.tms_utime - lastUserCPU);
percent /= (now - lastCPU);
percent /= numProcessors;
percent *= 100;
}
lastCPU = now;
lastSysCPU = timeSample.tms_stime;
lastUserCPU = timeSample.tms_utime;
return percent;
}
TODO:其他平台
我认为,除了读取/ proc伪文件系统的部分之外,一些Linux代码也适用于Unix。也许在Unix上,这些部件可以用
如果有Unix技术人员可以编辑这个答案并填写详细信息?!
Linux的
在Linux中,此信息在/ proc文件系统中可用。我不是所用文本文件格式的忠实粉丝,因为每个Linux发行版似乎都自定义了至少一个重要文件。快速浏览"ps"的来源可以揭示混乱局面。
但是,这里可以找到您寻找的信息:
/ proc / meminfo包含您寻求的大多数系统范围的信息。在我的系统上看起来像;我想你对MemTotal,MemFree,SwapTotal和SwapFree感兴趣:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | Anderson cxc # more /proc/meminfo MemTotal: 4083948 kB MemFree: 2198520 kB Buffers: 82080 kB Cached: 1141460 kB SwapCached: 0 kB Active: 1137960 kB Inactive: 608588 kB HighTotal: 3276672 kB HighFree: 1607744 kB LowTotal: 807276 kB LowFree: 590776 kB SwapTotal: 2096440 kB SwapFree: 2096440 kB Dirty: 32 kB Writeback: 0 kB AnonPages: 523252 kB Mapped: 93560 kB Slab: 52880 kB SReclaimable: 24652 kB SUnreclaim: 28228 kB PageTables: 2284 kB NFS_Unstable: 0 kB Bounce: 0 kB CommitLimit: 4138412 kB Committed_AS: 1845072 kB VmallocTotal: 118776 kB VmallocUsed: 3964 kB VmallocChunk: 112860 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 Hugepagesize: 2048 kB |
对于CPU利用率,您必须做一些工作。 Linux自系统启动以来可提供整体CPU利用率;这可能不是你感兴趣的。如果你想知道最后一秒或10秒的CPU利用率是多少,那么你需要查询信息并自己计算。
这些信息可以在/ proc / stat中找到,在http://www.linuxhowtos.org/System/procstat.htm上有很好的记录。这是我的4核盒子上的样子:
1 2 3 4 5 6 7 8 9 10 11 12 | Anderson cxc # more /proc/stat cpu 2329889 0 2364567 1063530460 9034 9463 96111 0 cpu0 572526 0 636532 265864398 2928 1621 6899 0 cpu1 590441 0 531079 265949732 4763 351 8522 0 cpu2 562983 0 645163 265796890 682 7490 71650 0 cpu3 603938 0 551790 265919440 660 0 9040 0 intr 37124247 ctxt 50795173133 btime 1218807985 processes 116889 procs_running 1 procs_blocked 0 |
首先,您需要确定系统中有多少CPU(或处理器或处理核心)可用。为此,请计算"cpuN"条目的数量,其中N从0开始并递增。不要计算'cpu'行,它是cpuN行的组合。在我的示例中,您可以看到cpu0到cpu3,总共4个处理器。从现在开始,您可以忽略cpu0..cpu3,并只关注'cpu'行。
接下来,您需要知道这些行中的第四个数字是空闲时间的度量,因此"cpu"行上的第四个数字是自启动时间以来所有处理器的总空闲时间。这个时间是在Linux"jiffies"中测量的,每个都是1/100秒。
但你不关心总的空闲时间;你关心给定时期内的空闲时间,例如最后一秒。计算一下,你需要读取这个文件两次,相隔1秒。然后你可以做一行该行的第四个值。例如,如果您采取样本并获得:
1 | cpu 2330047 0 2365006 1063853632 9035 9463 96114 0 |
然后一秒钟后你得到这个样本:
1 | cpu 2330047 0 2365007 1063854028 9035 9463 96114 0 |
减去这两个数字,得到396的差值,这意味着你的CPU在过去的1.00秒内空闲了3.96秒。当然,诀窍是你需要除以处理器的数量。 3.96 / 4 = 0.99,你的空闲百分比; 99%空闲,1%忙。
在我的代码中,我有一个360条目的环形缓冲区,我每秒都读取这个文件。这让我可以快速计算CPU利用率1秒,10秒等,一直到1小时。
对于特定于进程的信息,您必须查看/ proc / pid;如果你不关心你的pid,你可以查看/ proc / self。
您的进程使用的CPU在/ proc / self / stat中可用。这是一个奇怪的文件,由一行组成;例如:
1 2 3 | 19340 (whatever) S 19115 19115 3084 34816 19115 4202752 118200 607 0 0 770 384 2 7 20 0 77 0 266764385 692477952 105074 4294967295 134512640 146462952 321468364 8 3214683328 4294960144 0 2147221247 268439552 1276 4294967295 0 0 17 0 0 0 0 |
这里的重要数据是第13和第14个令牌(这里是0和770)。第13个标记是进程在用户模式下执行的jiffies数,第14个标记是进程在内核模式下执行的jiffies数。将两者一起添加,即可获得总CPU利用率。
同样,您必须定期对此文件进行采样,并计算差异,以便确定进程随时间的CPU使用情况。
编辑:请记住,在计算进程的CPU利用率时,必须考虑1)进程中的线程数,以及2)系统中的处理器数。例如,如果您的单线程进程仅使用了25%的CPU,那可能是好的也可能是坏的。单处理器系统很好,但4处理器系统很糟糕;这意味着您的进程不断运行,并使用100%的可用CPU周期。
对于特定于进程的内存信息,您需要查看/ proc / self / status,如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Name: whatever State: S (sleeping) Tgid: 19340 Pid: 19340 PPid: 19115 TracerPid: 0 Uid: 0 0 0 0 Gid: 0 0 0 0 FDSize: 256 Groups: 0 1 2 3 4 6 10 11 20 26 27 VmPeak: 676252 kB VmSize: 651352 kB VmLck: 0 kB VmHWM: 420300 kB VmRSS: 420296 kB VmData: 581028 kB VmStk: 112 kB VmExe: 11672 kB VmLib: 76608 kB VmPTE: 1244 kB Threads: 77 SigQ: 0/36864 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: fffffffe7ffbfeff SigIgn: 0000000010001000 SigCgt: 20000001800004fc CapInh: 0000000000000000 CapPrm: 00000000ffffffff CapEff: 00000000fffffeff Cpus_allowed: 0f Mems_allowed: 1 voluntary_ctxt_switches: 6518 nonvoluntary_ctxt_switches: 6598 |
以'Vm'开头的条目是有趣的:
我不确定的唯一项目是我的进程当前使用的Swapspace。我不知道这是否可用。
好。
在Windows中你可以通过以下代码获得cpu使用情况:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | #include <windows.h> #include <stdio.h> //------------------------------------------------------------------------------------------------------------------ // Prototype(s)... //------------------------------------------------------------------------------------------------------------------ CHAR cpuusage(void); //----------------------------------------------------- typedef BOOL ( __stdcall * pfnGetSystemTimes)( LPFILETIME lpIdleTime, LPFILETIME lpKernelTime, LPFILETIME lpUserTime ); static pfnGetSystemTimes s_pfnGetSystemTimes = NULL; static HMODULE s_hKernel = NULL; //----------------------------------------------------- void GetSystemTimesAddress() { if( s_hKernel == NULL ) { s_hKernel = LoadLibrary( L"Kernel32.dll" ); if( s_hKernel != NULL ) { s_pfnGetSystemTimes = (pfnGetSystemTimes)GetProcAddress( s_hKernel,"GetSystemTimes" ); if( s_pfnGetSystemTimes == NULL ) { FreeLibrary( s_hKernel ); s_hKernel = NULL; } } } } //---------------------------------------------------------------------------------------------------------------- //---------------------------------------------------------------------------------------------------------------- // cpuusage(void) // ============== // Return a CHAR value in the range 0 - 100 representing actual CPU usage in percent. //---------------------------------------------------------------------------------------------------------------- CHAR cpuusage() { FILETIME ft_sys_idle; FILETIME ft_sys_kernel; FILETIME ft_sys_user; ULARGE_INTEGER ul_sys_idle; ULARGE_INTEGER ul_sys_kernel; ULARGE_INTEGER ul_sys_user; static ULARGE_INTEGER ul_sys_idle_old; static ULARGE_INTEGER ul_sys_kernel_old; static ULARGE_INTEGER ul_sys_user_old; CHAR usage = 0; // we cannot directly use GetSystemTimes on C language /* add this line :: pfnGetSystemTimes */ s_pfnGetSystemTimes(&ft_sys_idle, /* System idle time */ &ft_sys_kernel, /* system kernel time */ &ft_sys_user); /* System user time */ CopyMemory(&ul_sys_idle , &ft_sys_idle , sizeof(FILETIME)); // Could been optimized away... CopyMemory(&ul_sys_kernel, &ft_sys_kernel, sizeof(FILETIME)); // Could been optimized away... CopyMemory(&ul_sys_user , &ft_sys_user , sizeof(FILETIME)); // Could been optimized away... usage = ( ( ( ( (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+ (ul_sys_user.QuadPart - ul_sys_user_old.QuadPart) ) - (ul_sys_idle.QuadPart-ul_sys_idle_old.QuadPart) ) * (100) ) / ( (ul_sys_kernel.QuadPart - ul_sys_kernel_old.QuadPart)+ (ul_sys_user.QuadPart - ul_sys_user_old.QuadPart) ) ); ul_sys_idle_old.QuadPart = ul_sys_idle.QuadPart; ul_sys_user_old.QuadPart = ul_sys_user.QuadPart; ul_sys_kernel_old.QuadPart = ul_sys_kernel.QuadPart; return usage; } //------------------------------------------------------------------------------------------------------------------ // Entry point //------------------------------------------------------------------------------------------------------------------ int main(void) { int n; GetSystemTimesAddress(); for(n=0;n<20;n++) { printf("CPU Usage: %3d%% ",cpuusage()); Sleep(2000); } printf(" "); return 0; } |
Linux的
用法
1 2 3 | #include <sys/sysinfo.h> int sysinfo(struct sysinfo *info); |
描述
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | Until Linux 2.3.16, sysinfo() used to return information in the following structure: struct sysinfo { long uptime; /* Seconds since boot */ unsigned long loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long totalram; /* Total usable main memory size */ unsigned long freeram; /* Available memory size */ unsigned long sharedram; /* Amount of shared memory */ unsigned long bufferram; /* Memory used by buffers */ unsigned long totalswap; /* Total swap space size */ unsigned long freeswap; /* swap space still available */ unsigned short procs; /* Number of current processes */ char _f[22]; /* Pads structure to 64 bytes */ }; and the sizes were given in bytes. Since Linux 2.3.23 (i386), 2.3.48 (all architectures) the structure is: struct sysinfo { long uptime; /* Seconds since boot */ unsigned long loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long totalram; /* Total usable main memory size */ unsigned long freeram; /* Available memory size */ unsigned long sharedram; /* Amount of shared memory */ unsigned long bufferram; /* Memory used by buffers */ unsigned long totalswap; /* Total swap space size */ unsigned long freeswap; /* swap space still available */ unsigned short procs; /* Number of current processes */ unsigned long totalhigh; /* Total high memory size */ unsigned long freehigh; /* Available high memory size */ unsigned int mem_unit; /* Memory unit size in bytes */ char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding to 64 bytes */ }; and the sizes are given as multiples of mem_unit bytes. |
QNX
因为这就像一个"代码的wikipage"我想从QNX知识库中添加一些代码(注意:这不是我的工作,但我检查了它,它在我的系统上工作正常):
如何以%为单位获取CPU使用率:http://www.qnx.com/support/knowledgebase.html?id = 50130000000P9b5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | #include #include <libc.h> #include <pthread.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/iofunc.h> #include <sys/neutrino.h> #include <sys/resmgr.h> #include <sys/syspage.h> #include <unistd.h> #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/debug.h> #include <sys/procfs.h> #include <sys/syspage.h> #include <sys/neutrino.h> #include <sys/time.h> #include <time.h> #include <fcntl.h> #include <devctl.h> #include <errno.h> #define MAX_CPUS 32 static float Loads[MAX_CPUS]; static _uint64 LastSutime[MAX_CPUS]; static _uint64 LastNsec[MAX_CPUS]; static int ProcFd = -1; static int NumCpus = 0; int find_ncpus(void) { return NumCpus; } int get_cpu(int cpu) { int ret; ret = (int)Loads[ cpu % MAX_CPUS ]; ret = max(0,ret); ret = min(100,ret); return( ret ); } static _uint64 nanoseconds( void ) { _uint64 sec, usec; struct timeval tval; gettimeofday( &tval, NULL ); sec = tval.tv_sec; usec = tval.tv_usec; return( ( ( sec * 1000000 ) + usec ) * 1000 ); } int sample_cpus( void ) { int i; debug_thread_t debug_data; _uint64 current_nsec, sutime_delta, time_delta; memset( &debug_data, 0, sizeof( debug_data ) ); for( i=0; i<NumCpus; i++ ) { /* Get the sutime of the idle thread #i+1 */ debug_data.tid = i + 1; devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL ); /* Get the current time */ current_nsec = nanoseconds(); /* Get the deltas between now and the last samples */ sutime_delta = debug_data.sutime - LastSutime[i]; time_delta = current_nsec - LastNsec[i]; /* Figure out the load */ Loads[i] = 100.0 - ( (float)( sutime_delta * 100 ) / (float)time_delta ); /* Flat out strange rounding issues. */ if( Loads[i] < 0 ) { Loads[i] = 0; } /* Keep these for reference in the next cycle */ LastNsec[i] = current_nsec; LastSutime[i] = debug_data.sutime; } return EOK; } int init_cpu( void ) { int i; debug_thread_t debug_data; memset( &debug_data, 0, sizeof( debug_data ) ); /* Open a connection to proc to talk over.*/ ProcFd = open("/proc/1/as", O_RDONLY ); if( ProcFd == -1 ) { fprintf( stderr,"pload: Unable to access procnto: %s ",strerror( errno ) ); fflush( stderr ); return -1; } i = fcntl(ProcFd,F_GETFD); if(i != -1){ i |= FD_CLOEXEC; if(fcntl(ProcFd,F_SETFD,i) != -1){ /* Grab this value */ NumCpus = _syspage_ptr->num_cpu; /* Get a starting point for the comparisons */ for( i=0; i<NumCpus; i++ ) { /* * the sutime of idle thread is how much * time that thread has been using, we can compare this * against how much time has passed to get an idea of the * load on the system. */ debug_data.tid = i + 1; devctl( ProcFd, DCMD_PROC_TIDSTATUS, &debug_data, sizeof( debug_data ), NULL ); LastSutime[i] = debug_data.sutime; LastNsec[i] = nanoseconds(); } return(EOK); } } close(ProcFd); return(-1); } void close_cpu(void){ if(ProcFd != -1){ close(ProcFd); ProcFd = -1; } } int main(int argc, char* argv[]){ int i,j; init_cpu(); printf("System has: %d CPUs ", NumCpus); for(i=0; i<20; i++) { sample_cpus(); for(j=0; j<NumCpus;j++) printf("CPU #%d: %f ", j, Loads[j]); sleep(1); } close_cpu(); } |
如何获得免费(!)内存:http://www.qnx.com/support/knowledgebase.html?id = 50130000000mlbx
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <err.h> #include <sys/stat.h> #include <sys/types.h> int main( int argc, char *argv[] ){ struct stat statbuf; paddr_t freemem; stat("/proc", &statbuf ); freemem = (paddr_t)statbuf.st_size; printf("Free memory: %d bytes ", freemem ); printf("Free memory: %d KB ", freemem / 1024 ); printf("Free memory: %d MB ", freemem / ( 1024 * 1024 ) ); return 0; } |
Mac OS X - CPU
总CPU使用率:
从检索MacOS X上的系统信息? :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | #include <mach/mach_init.h> #include <mach/mach_error.h> #include <mach/mach_host.h> #include <mach/vm_map.h> static unsigned long long _previousTotalTicks = 0; static unsigned long long _previousIdleTicks = 0; // Returns 1.0f for"CPU fully pinned", 0.0f for"CPU idle", or somewhere in between // You'll need to call this at regular intervals, since it measures the load between // the previous call and the current one. float GetCPULoad() { host_cpu_load_info_data_t cpuinfo; mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT; if (host_statistics(mach_host_self(), HOST_CPU_LOAD_INFO, (host_info_t)&cpuinfo, &count) == KERN_SUCCESS) { unsigned long long totalTicks = 0; for(int i=0; i<CPU_STATE_MAX; i++) totalTicks += cpuinfo.cpu_ticks[i]; return CalculateCPULoad(cpuinfo.cpu_ticks[CPU_STATE_IDLE], totalTicks); } else return -1.0f; } float CalculateCPULoad(unsigned long long idleTicks, unsigned long long totalTicks) { unsigned long long totalTicksSinceLastTime = totalTicks-_previousTotalTicks; unsigned long long idleTicksSinceLastTime = idleTicks-_previousIdleTicks; float ret = 1.0f-((totalTicksSinceLastTime > 0) ? ((float)idleTicksSinceLastTime)/totalTicksSinceLastTime : 0); _previousTotalTicks = totalTicks; _previousIdleTicks = idleTicks; return ret; } |
对于Linux
您还可以使用/ proc / self / statm来获取包含关键进程内存信息的单行数,这比处理从proc / self / status获得的一长串报告信息要快得多。
见http://man7.org/linux/man-pages/man5/proc.5.html
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | /proc/[pid]/statm Provides information about memory usage, measured in pages. The columns are: size (1) total program size (same as VmSize in /proc/[pid]/status) resident (2) resident set size (same as VmRSS in /proc/[pid]/status) shared (3) number of resident shared pages (i.e., backed by a file) (same as RssFile+RssShmem in /proc/[pid]/status) text (4) text (code) lib (5) library (unused since Linux 2.6; always 0) data (6) data + stack dt (7) dirty pages (unused since Linux 2.6; always 0) |
我在我的C ++项目中使用了以下代码,它工作得很好:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | static HANDLE self; static int numProcessors; SYSTEM_INFO sysInfo; double percent; numProcessors = sysInfo.dwNumberOfProcessors; //Getting system times information FILETIME SysidleTime; FILETIME SyskernelTime; FILETIME SysuserTime; ULARGE_INTEGER SyskernelTimeInt, SysuserTimeInt; GetSystemTimes(&SysidleTime, &SyskernelTime, &SysuserTime); memcpy(&SyskernelTimeInt, &SyskernelTime, sizeof(FILETIME)); memcpy(&SysuserTimeInt, &SysuserTime, sizeof(FILETIME)); __int64 denomenator = SysuserTimeInt.QuadPart + SyskernelTimeInt.QuadPart; //Getting process times information FILETIME ProccreationTime, ProcexitTime, ProcKernelTime, ProcUserTime; ULARGE_INTEGER ProccreationTimeInt, ProcexitTimeInt, ProcKernelTimeInt, ProcUserTimeInt; GetProcessTimes(self, &ProccreationTime, &ProcexitTime, &ProcKernelTime, &ProcUserTime); memcpy(&ProcKernelTimeInt, &ProcKernelTime, sizeof(FILETIME)); memcpy(&ProcUserTimeInt, &ProcUserTime, sizeof(FILETIME)); __int64 numerator = ProcUserTimeInt.QuadPart + ProcKernelTimeInt.QuadPart; //QuadPart represents a 64-bit signed integer (ULARGE_INTEGER) percent = 100*(numerator/denomenator); |