关于python:获取特定值以上二维数组中局部最大值的坐标

Get coordinates of local maxima in 2D array above certain value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from PIL import Image
import numpy as np
from scipy.ndimage.filters import maximum_filter
import pylab

# the picture (256 * 256 pixels) contains bright spots of which I wanna get positions
# problem: data has high background around value 900 - 1000

im = Image.open('slice0000.png')
data = np.array(im)

# as far as I understand, data == maximum_filter gives True-value for pixels
# being the brightest in their neighborhood (here 10 * 10 pixels)

maxima = (data == maximum_filter(data,10))
# How can I get only maxima, outstanding the background a certain value, let's say 500 ?

恐怕我不太了解scipy.ndimage.filters.maximum_filter()的功能。有没有办法只在斑点内而不在背景内获得像素坐标?

http://i.stack.imgur.com/rimhw.png(16位灰度图片,256*256像素)


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib.pyplot as plt

fname = '/tmp/slice0000.png'
neighborhood_size = 5
threshold = 1500

data = scipy.misc.imread(fname)

data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0

labeled, num_objects = ndimage.label(maxima)
slices = ndimage.find_objects(labeled)
x, y = [], []
for dy,dx in slices:
    x_center = (dx.start + dx.stop - 1)/2
    x.append(x_center)
    y_center = (dy.start + dy.stop - 1)/2    
    y.append(y_center)

plt.imshow(data)
plt.savefig('/tmp/data.png', bbox_inches = 'tight')

plt.autoscale(False)
plt.plot(x,y, 'ro')
plt.savefig('/tmp/result.png', bbox_inches = 'tight')

给定的data.png:

enter image description here

在以上threshold = 1500YIELDS result.png与程序。《threshold下两个局部极大值提取的乐趣:

enter image description here

证明人:

  • 塞巴斯蒂安计数核
  • 乔认定该爪的照片
  • 伊凡的局部maximums认定


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
import matplotlib.pyplot as plt

fname = '/tmp/slice0000.png'
neighborhood_size = 5
threshold = 1500

data = scipy.misc.imread(fname)

data_max = filters.maximum_filter(data, neighborhood_size)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, neighborhood_size)
diff = ((data_max - data_min) > threshold)
maxima[diff == 0] = 0

labeled, num_objects = ndimage.label(maxima)
xy = np.array(ndimage.center_of_mass(data, labeled, range(1, num_objects+1)))

plt.imshow(data)
plt.savefig('/tmp/data.png', bbox_inches = 'tight')

plt.autoscale(False)
plt.plot(xy[:, 1], xy[:, 0], 'ro')
plt.savefig('/tmp/result.png', bbox_inches = 'tight')

《超级有用的输入是以前的我,但是我的slowed回路的应用上。我发现这部ndimage.center _ _轨道()是一个伟大的和固定的工作,把两个坐标。hence这个建议。


这是我现在所做的与skimage。

1
2
from skimage.feature import peak_local_max
xy = peak_local_max(data, min_distance=2,threshold_abs=1500)

在我的电脑,一个VGA图像尺寸它运行约4倍以上,比《阿姨也返回液和一个更准确的位置在某些用例。