Rectangular bounding box around blobs in a monochrome image using python
我有一些单色图像(黑白而不是灰度),有一些形状怪异的物体。我尝试使用python27、pil、scipy&numpy和以下方法提取每个对象:
我已经看过http://www.scipy.org/cookbook/drawinder和http://scikits-image.org/docs/dev/auto_examples/plot_outlines.html,这些都可以工作,但我特别希望边界框是矩形的,以确保边界框中包含任何"稍微断开的"位。理想情况下,为了处理断开的位(例如左下角的斑点),我需要某种阈值控制。关于什么工具箱最适合这个有什么想法吗?
。氧化镁
这使用了JoeKington的
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | import numpy as np import scipy.ndimage as ndimage import scipy.spatial as spatial import scipy.misc as misc import matplotlib.pyplot as plt import matplotlib.patches as patches class BBox(object): def __init__(self, x1, y1, x2, y2): ''' (x1, y1) is the upper left corner, (x2, y2) is the lower right corner, with (0, 0) being in the upper left corner. ''' if x1 > x2: x1, x2 = x2, x1 if y1 > y2: y1, y2 = y2, y1 self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 def taxicab_diagonal(self): ''' Return the taxicab distance from (x1,y1) to (x2,y2) ''' return self.x2 - self.x1 + self.y2 - self.y1 def overlaps(self, other): ''' Return True iff self and other overlap. ''' return not ((self.x1 > other.x2) or (self.x2 < other.x1) or (self.y1 > other.y2) or (self.y2 < other.y1)) def __eq__(self, other): return (self.x1 == other.x1 and self.y1 == other.y1 and self.x2 == other.x2 and self.y2 == other.y2) def find_paws(data, smooth_radius = 5, threshold = 0.0001): # https://stackoverflow.com/questions/4087919/how-can-i-improve-my-paw-detection """Detects and isolates contiguous regions in the input array""" # Blur the input data a bit so the paws have a continous footprint data = ndimage.uniform_filter(data, smooth_radius) # Threshold the blurred data (this needs to be a bit > 0 due to the blur) thresh = data > threshold # Fill any interior holes in the paws to get cleaner regions... filled = ndimage.morphology.binary_fill_holes(thresh) # Label each contiguous paw coded_paws, num_paws = ndimage.label(filled) # Isolate the extent of each paw # find_objects returns a list of 2-tuples: (slice(...), slice(...)) # which represents a rectangular box around the object data_slices = ndimage.find_objects(coded_paws) return data_slices def slice_to_bbox(slices): for s in slices: dy, dx = s[:2] yield BBox(dx.start, dy.start, dx.stop+1, dy.stop+1) def remove_overlaps(bboxes): ''' Return a set of BBoxes which contain the given BBoxes. When two BBoxes overlap, replace both with the minimal BBox that contains both. ''' # list upper left and lower right corners of the Bboxes corners = [] # list upper left corners of the Bboxes ulcorners = [] # dict mapping corners to Bboxes. bbox_map = {} for bbox in bboxes: ul = (bbox.x1, bbox.y1) lr = (bbox.x2, bbox.y2) bbox_map[ul] = bbox bbox_map[lr] = bbox ulcorners.append(ul) corners.append(ul) corners.append(lr) # Use a KDTree so we can find corners that are nearby efficiently. tree = spatial.KDTree(corners) new_corners = [] for corner in ulcorners: bbox = bbox_map[corner] # Find all points which are within a taxicab distance of corner indices = tree.query_ball_point( corner, bbox_map[corner].taxicab_diagonal(), p = 1) for near_corner in tree.data[indices]: near_bbox = bbox_map[tuple(near_corner)] if bbox != near_bbox and bbox.overlaps(near_bbox): # Expand both bboxes. # Since we mutate the bbox, all references to this bbox in # bbox_map are updated simultaneously. bbox.x1 = near_bbox.x1 = min(bbox.x1, near_bbox.x1) bbox.y1 = near_bbox.y1 = min(bbox.y1, near_bbox.y1) bbox.x2 = near_bbox.x2 = max(bbox.x2, near_bbox.x2) bbox.y2 = near_bbox.y2 = max(bbox.y2, near_bbox.y2) return set(bbox_map.values()) if __name__ == '__main__': fig = plt.figure() ax = fig.add_subplot(111) data = misc.imread('image.png') im = ax.imshow(data) data_slices = find_paws(255-data, smooth_radius = 20, threshold = 22) bboxes = remove_overlaps(slice_to_bbox(data_slices)) for bbox in bboxes: xwidth = bbox.x2 - bbox.x1 ywidth = bbox.y2 - bbox.y1 p = patches.Rectangle((bbox.x1, bbox.y1), xwidth, ywidth, fc = 'none', ec = 'red') ax.add_patch(p) plt.show() |
产量。