基于PyTorch的Vgg16训练数据

1.数据准备

(1)ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,详见ImageFolder

(2)数据示例

按照类别划分目录

2.训练代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
'''
基于PyTorch的VGG16迁移学习
'''

from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
from torchvision import models
import matplotlib.pyplot as plt

batch_size = 16
learning_rate = 0.0002
epoch = 10

train_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])
val_transforms = transforms.Compose([
    transforms.Resize(256),
    transforms.RandomResizedCrop(224),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

train_dir = '../data/train'
train_datasets = datasets.ImageFolder(train_dir, transform=train_transforms)
train_dataloader = torch.utils.data.DataLoader(train_datasets, batch_size=batch_size, shuffle=True)

val_dir = '../data/test'
val_datasets = datasets.ImageFolder(val_dir, transform=val_transforms)
val_dataloader = torch.utils.data.DataLoader(val_datasets, batch_size=batch_size, shuffle=True)


class VGGNet(nn.Module):
    def __init__(self, num_classes=4):
        super(VGGNet, self).__init__()
        net = models.vgg16(pretrained=True)#迁移学习,需要下载模型
        net.classifier = nn.Sequential()
        self.features = net
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 512),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(512, 128),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(128, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x


# --------------------训练过程---------------------------------
model = VGGNet()
if torch.cuda.is_available():
    model.cuda()
params = [{'params': md.parameters()} for md in model.children()
          if md in [model.classifier]]
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
loss_func = nn.CrossEntropyLoss()

Loss_list = []
Accuracy_list = []

for epoch in range(100):
    print('epoch {}'.format(epoch + 1))
    # training-----------------------------
    train_loss = 0.
    train_acc = 0.
    for batch_x, batch_y in train_dataloader:
        batch_x, batch_y = Variable(batch_x).cuda(), Variable(batch_y).cuda()

        out = model(batch_x)

        loss = loss_func(out, batch_y)

        train_loss += loss.item()
        pred = torch.max(out, 1)[1]

        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
        train_datasets)), train_acc / (len(train_datasets))))

    # evaluation--------------------------------
    model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for batch_x, batch_y in val_dataloader:
        batch_x, batch_y = Variable(batch_x, volatile=True).cuda(), Variable(batch_y, volatile=True).cuda()
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        eval_loss += loss.item()
        pred = torch.max(out, 1)[1]
        num_correct = (pred == batch_y).sum()
        eval_acc += num_correct.item()
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        val_datasets)), eval_acc / (len(val_datasets))))

    Loss_list.append(eval_loss / (len(val_datasets)))
    Accuracy_list.append(100 * eval_acc / (len(val_datasets)))
#模型保存
torch.save(model, './model/model.pth')
#loss显示
x1 = range(0, 100)
x2 = range(0, 100)
y1 = Accuracy_list
y2 = Loss_list
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'o-')
plt.title('Test accuracy vs. epoches')
plt.ylabel('Test accuracy')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, '.-')
plt.xlabel('Test loss vs. epoches')
plt.ylabel('Test loss')
plt.show()
# plt.savefig("accuracy_loss.jpg")

因迁移学习需下载模型,若无法下载请联系[email protected]获取,不经常看邮箱(●ˇ?ˇ●)

3.使用代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from __future__ import print_function, division
import torch
import torch.nn as nn
from torchvision import transforms
from torch.autograd import Variable
from torchvision import models
from PIL import Image

class VGGNet(nn.Module):
    def __init__(self, num_classes=4):
        super(VGGNet, self).__init__()
        net = models.vgg16(pretrained=True)
        net.classifier = nn.Sequential()
        self.features = net
        self.classifier = nn.Sequential(
            nn.Linear(512 * 7 * 7, 512),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(512, 128),
            nn.ReLU(True),
            nn.Dropout(),
            nn.Linear(128, num_classes),
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

test_img = Image.open('img_path')
train_transforms = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((.5, .5, .5), (.5, .5, .5))
])

test_img = train_transforms(test_img)
img = test_img.view(-1, 3, 224, 224)
model = torch.load('./model/model.pth')

if torch.cuda.is_available():
    model.cuda()
    img = Variable(img).cuda()

out = model(img)
pred = torch.max(out, 1)[1]
print(pred)

好了,应该没了。