空间可分离卷积和深度可分离卷积


一些简单而高效的轻量级模型,如,GoogLeNet中提到的Inception结构中将普通的3x3卷积替换为连续的1x3和3x1卷积,实际完成的是空间可分离卷积spatial separable convolution,如MobileNet、ShuffleNet、EffNet,都使用了深度可分离卷积depthwise separable convolution,其由逐通道卷积depthwise(DW)和逐点卷积pointwise(PW)两部分结合起来。和常规卷积操作一样,其输出为feature map。相比常规的卷积操作,其参数数量和运算成本比较低。

常规卷积操作

对于一张5×5像素、三通道(shape为5×5×3),经过3×3卷积核的卷积层(假设输出通道数为4,则卷积核shape为3×3×3×4,最终输出4个Feature Map,如果有same padding则尺寸与输入层相同(5×5),如果没有则为尺寸变为3×3

在这里插入图片描述

卷积层共4个Filter,每个Filter包含了3个Kernel,每个Kernel的大小为3×3。因此卷积层的参数数量可以用如下公式来计算:

N_std = 4 × 3 × 3 × 3 = 108

空间可分离卷积

之所以叫空间可分离卷积,是因为它主要处理图像和卷积核(kernel)的空间维度:宽度和高度。空间可分离卷积简单地将卷积核划分为两个较小的卷积核。 最常见的情况是将3x3的卷积核划分为3x1和1x3的卷积 核,如下所示:

在这里插入图片描述

现在,我们不是用9次乘法进行一次卷积,而是进行两次卷积,每次3次乘法(总共6次),以达到相同的效果。 乘法较少,计算复杂性下降,网络运行速度更快。
在这里插入图片描述

深度可分离卷积

  • 逐通道卷积

Depthwise Convolution的一个卷积核负责一个通道,一个通道只被一个卷积核卷积。
一张5×5像素、三通道彩色输入图片(shape为5×5×3),Depthwise Convolution首先经过第一次卷积运算,DW完全是在二维平面内进行。卷积核的数量与上一层的通道数相同(通道和卷积核一一对应)。所以一个三通道的图像经过运算后生成了3个Feature map(如果有same padding则尺寸与输入层相同为5×5),如下图所示。

在这里插入图片描述

其中一个Filter只包含一个大小为3×3的Kernel,卷积部分的参数个数计算如下:

N_depthwise = 3 × 3 × 3 = 27

Depthwise Convolution完成后的Feature map数量与输入层的通道数相同,无法扩展Feature map。而且这种运算对输入层的每个通道独立进行卷积运算,没有有效的利用不同通道在相同空间位置上的feature信息。因此需要Pointwise Convolution来将这些Feature map进行组合生成新的Feature map。

  • 逐点卷积

Pointwise Convolution的运算与常规卷积运算非常相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。所以这里的卷积运算会将上一步的map在深度方向上进行加权组合,生成新的Feature map。有几个卷积核就有几个输出Feature map。

在这里插入图片描述

由于采用的是1×1卷积的方式,此步中卷积涉及到的参数个数可以计算为:

N_pointwise = 1 × 1 × 3 × 4 = 12

经过Pointwise Convolution之后,同样输出了4张Feature map,与常规卷积的输出维度相同。

  • 参数对比

常规卷积的参数个数为:
N_std = 4 × 3 × 3 × 3 = 108

Separable Convolution的参数由两部分相加得到:
N_depthwise = 3 × 3 × 3 = 27
N_pointwise = 1 × 1 × 3 × 4 = 12
N_separable = N_depthwise + N_pointwise = 39

可以明显的看到,相同的输入,同样是得到4张Feature map,Depthwise Separable Convolution的参数个数是常规卷积的约1/3。因此,在参数量相同的前提下,采用Depthwise Separable Convolution的神经网络层数可以做的更深。

参考:
https://zhuanlan.zhihu.com/p/80041030
https://blog.csdn.net/qq_42793029/article/details/90518241